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Supercomputers: A Personal Historical Sample (~25 years)
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Computing Paradigm (Cosmic and Energy Frontiers)

Simulated Data: 1) Large-scale simulation of the Universe, 2) Synthetic catalogs,
3) Statistical inference (cosmology); Analysis: Comparison with actual data
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Simulated Data: 1) Event generation (lists of particles and momenta), 2)
Simulation (interaction with detector), 3) Reconstruction (presence of particles
inferred from detector response); Analysis: Comparison with actual data



What this Talk Tries to Cover —

Second level

- HPC meets Data-Intensive vl Pata S vHics
I Cosmol Data Analyti
ComPUtlng S?r::t:‘lgt?:: +\a/isaua:‘i:ati:: Data Pulling’  Vis. Streaming Data
» Cosmology context iy (Blue Waters) Analytics

» HPC systems as data °A$§;'l'§frﬁﬁﬁﬁ:f’
sources and sinks > 1PB/day (once)

100Gb/s / \ Data Pulling
2cd level data '-. /'
Visualization streammg Vis. Streamin

29 Billion particles Archwe >1PB of Storage (DDN)
1 (transmit all + Second level Visualization
’ Personal experlence’ snapshots) Display (NCSA, EVL)

provide reality check
» DOE HEP response,

- - Advanced Scientific Computing High Energy Physics (HEP)
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HEP-CCE s

 Hope is to provide some R e
general lessons that may :
possibly be useful to NP

- Suggestion: Explore _
possible HEP-NP http://hepcce.org/

connections via HEP-CCE
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From Jim Siegrist’s talk at ICHEP 2016


http://hepcce.org/

Different Flavors of Computing

 High Performance Computing (‘PDEs’)
» Parallel systems with a fast network
» Designed to run tightly coupled jobs
» “High performance” parallel file system
» Batch processing

e Data-Intensive Computing (‘Interactive Analytics’)

Parallel systems with balanced /O

Designed for data analytics Want more of this — (“Science Cloud”),
but don’t yet (really) have it

(Data-Intensive Scalable Computing: DISC)

v

v

v

System level storage model
Fast Interactive processing

v

e High Throughput Computing (‘Events’/‘Workflows’)
» Distributed systems with “slow” networks
» Designed to run loosely coupled jobs
» System level/Distributed data model
» Batch processing




HPC + DISC Future: Desired Outcome
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Reality — Very Much a Work in Progress

Fat Pipes,

>
]
\

I

W

-
O O ‘

i

g

Computational

Cosmology:
Reality Check

(with schedu
-+ ‘dataflows)’



HEP Computing Requirements for ‘Energy Frontier’

 HEP Requirements in computing/storage will scale up by ~50X over 5-10 years
» Flat funding scenario fails — must look for alternatives!
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Evolution of ATLAS Tier-2 CPU Requirements

" Naive projection!
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Many White Papers and Reports —
http://hepcce.org/files/2016/11/DOE-ExascaleReport-HEP-Final.pdf
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Back to the Universe: Science Drivers
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Fidelity/Complexity

Precision Cosmology: Simulation Frontiers

Petascale

Terascale

® First-generation
surveys
® Single-probe

Exascale

® Second-generation
surveys

® Multi-probe
simulations

® Few precision probes

® |ntermediate accuracy
parameter estimation

Simulation Volume

® Next-generation
surveys

® End-to-end, multi-
probe survey-scale
simulations

® Multiple cross-
calibrated probes

¢ UQ-enabled cosmic
calibration frameworks




Cosmology Simulation: HACC Framework (PIC+PP+Hydro)

High-Order Spectral Particle-Mesh: Short-range forces tuned

by spectral filters, high-accuracy polynomial fits, custom 3D FFT HACC ol
i . : C ‘ , (Hardware/Hybrid
Particle Overloading: Particle replication at ‘'node’ edges Accelerated Cosmology Code)s
reduces communication, eases “soft portability” design 1/16384 of ‘QContinuum'’ run

on Titan

Performance Focus: Aim for high absolute performance on all
platforms, C++/MPI + ‘X’ programming model, first production
science code to cross 10PFlops sustained

Task-Based Load Balancing: Transfer of work packages using
overloading concept

Flexible Chaining Mesh: Optimizes tree/P3M methods

Optimized Force Kernels: Very high compute intensities, use
of mixed precision

Adaptive Time-Stepping: Sub-cycling of short-range time-
steps, adaptive time-stepping at the individual particle level

Custom Parallel I/0: Topology-aware parallel I/0O with lossless
compression (GenericlO)

CCRK-SPH Hydro: New hydrodynamics capability underway

Analysis: CosmoTools library (in situ/co-scheduled/offline)

\ EXASCALE
Habib et al., New Astron. 42, 49 (2016) E\(C\)P PROJECT




Speed-up vs Dual Socket Haswell

50x

45x

35x
30x
25x
20x
15x
10x

5x

m 2x K80 (M40 for Alexnet)

HACC on Pascal and KNL

w2x P100

Performance data courtesy NVIDIA

» 4x P100

m 8x P100

0x
Caffe/Alexnet VASP HOOMD-Blue COSMO MILC
5123: 64 cores, 4 nodes of BG/Q, 1 node of KNL
Cores RPN OMP TH BG/Q KNL BO. cache | KNL BO, flat Ratio
Time, s mode mode Time, s
Time, s
64 16 4 64 4542 678.7571 678.2269
64 16 8 128 2823 606.1815 609.2007
64 16 16 256 2556 587.2716 587.4443
64 32 2 64 4747 620.7261 621.2356
64 32 4 128 2824 536.1650 534.9907
64 32 8 256 2503 503.0927 501.8637
64 64 4 256 2539 510.3745 506.7107




Exascale Cosmology: ‘Big Data’ Meets Supercomputing

Supercomputer
simulation

campaigns

Statistics +
machine learning + L
optimization Sithulation -

methods Campaign

Cosmic Calibration Survey

Emulator based on
Gaussian process

f(x)

interpolation in VAR N WV

high-dimensional A
spaces - Cosmic Emulators”
05

1‘Precision

1

0
nput, x

Heitmann et al. 2006, Habib et al. 2007,

Higdon et al. 2010, etc. etc.

Mapping the sky

_ || ‘Dark Universe’ Telescop | . .
| ) = survey
instruments

Extraction of
summary
statistics from
survey sky
maps

Observations:

- Cosmological —
" Probes < | Statistical error
_ | bars very small,
| systematics
dominate

Oracle’

Science with Surveys:
HPC meets Big(ish) Data



Exascale Analytics/Workflow Complexity

High-Resolution
Cosmological
Simulation

Early Universe
Initial Conditions

Millions of images JebtiE LN

. for ML-based W eas it
classification . 5 L Ay

0.5

" End:to-End Modeling:
Representative Sky Image

Scientific Inference

e Data Analysis Pipeline

Multiple Outputs
Halo/Sub-Halo
Identification

: -Acfd’al.ObSéNétiénsE X
Representative Sky Image

Data Management
Pipeline

Halo Merger Trees

Semi-Analytic or
Empirical Galaxy
Modeling

Galaxy Catalog

Realistic Image
Catalog

Atmosphere and
Instrument Modeling




HPC and Data Science — A Difficult Marriage?

 Dealing with supercomputers is painful!

e HPC programming is tedious (MPIl, OpenMP, CUDA, OpenCL, —)

 Batch processing ruins interactivity

* File systems corrupt/eat your data

o Software suite for HPC work is very limited

 Analyzing large datasets on HPC systems is painful
e HPC experts are not user-friendly
e Downtime and mysterious crashes are common

e Ability to ‘roll your own’ is limited

Running Jobs

Queued Jobs

Total Queued Jobs: 172

Job Id $
307941
307942
309793
309794
309795
309271
309314
309315
309316
309317
309318

Project
SkySurvey
SkySurvey

NucStructReact_2
NucStructReact_2
NucStructReact_2

LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2

Reservations

Score ~
8351.7
8350.5
7069.0
7065.1
7056.8
6121.1
5036.1
5034.8
5034.0
5033.0
5032.6

Walitime <
1d 00:00:00
1d 00:00:00

01:00:00
01:00:00
01:00:00
03:00:00
04:50:00
03:00:00
04:50:00
03:00:00
04:50:00

7

5d 01:10:03
5d 01:09:42
1d 19:13:34
1d 19:12:28
1d 19:10:04
3d 03:40:34
2d 22:51:59
2d 22:51:38
2d 22:51:24
2d 22:51:08
2d 22:51:01

Queued Time <

Queue

prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability

Nodes <
32768
32768
32768
32768
32768
12288
12288
12288
12288
12288
12288




Scientific Data and Computing: ‘Geography’

e Optimal Large-Scale Efficiency

» Desire data and computing in the same place, but —
for a number of reasons — often not realistic

e Optimal Usability

» Mix of small/medium/large-scale computing, data,
and network resources, but often not affordable

e Real-World Issues

 Distributed ownership of data, computing,and =~~~ = .
networking creates policy barriers . {(— (A

» Lack of shared priorities across owners

» Multiple use case collisions: hard to optimize at the
system level

» Funding politics creates and (sometimes) stabilizes
nonoptimal ‘solutions’ (top-down does not work)

» Noodling around with data is not science

@ ESnet_ :

upercomputing-—-- i

e Practical Response L or

» Make things better, but not unrealistically better



Boundary Conditions

e What’s the Problem?

» Even if solutions can be designed in principle, the resources needed to
Implement them are (usually) not available

» Despite all the evidence of its power, computing still does not get high
enough priority compared to building “things”

» In part this is due to the success of computing — progress in this area is
usually much faster than in others, so one can assume that computing
will just happen — to what extent is this still true?

e Large-Scale Computing Available to Scientists
» Lots of supercomputing (HPC) available and more on the way

» Not enough data-intensive scalable computing (DISC) available to users,
hopefully this will change over time

» Publicly funded HTC/Grid computing resources cannot keep pace with
demand

» Commercial space (Cloud) may be a viable option but is not issue-free
» Storage, networking, and curation are major problems (sustainability)



“Data Meets HPC” — Basic Requirements

Software Stack: Ability to run arbitrarily complex software stacks on
HPC systems (software management)

Resilience: Ability to handle failures of job streams, still rudimentary
on HPC systems (resilience)

Resource Flexibility: Ability to run complex workflows with changing
computational ‘width’, possible but very clunky (elasticity)

Wide-Area Data Awareness: Ability to seamlessly move computing
to the data (and vice versa where possible); access to remote
databases and data consistency via well-designed and secure edge
services (integration)

Automated Workloads: Ability to run large-scale coordinated
automated production workflows including large-scale data motion
(global workflow management)

End-to-End Simulation-Based Analyses: Ability to run analysis
workflows on simulations using a combination of in situ and offline/
co-scheduling approaches (hybrid applications)



HEP-CCE

e HPC systems ARE useful for data-intensive tasks: Current estimates
are that up to 70% of HEP computing can be done on HPC platforms

 Will HPC systems deliver on this promise?: This is largely a policy
Issue, not primarily determined by technical bottlenecks

 |s the HEP case unique?: The HEP community is very “data-aware” as
compared to some others; the number of competing efforts is not large

« What about other fields?: There is likely to be an “effort barrier” — the
use case must be at large-enough scale to make a supercomputing-based
attack worthwhile; cloud or local resources will remain attractive options for
many applications P—— P

v/

Making the exascale AN HERCE SR POHT
. g ' N \\ ‘/I//J T
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ASCR — HEP-CCE i

http://hepcce.org/

ideas and tools
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“Production” Example: Large-Scale Data Movement

e Offline Data Flows: Cosmological
simulation data flows already require
~PB/week capability, next-generation

streaming data will require similar ‘ ALCF

bandwidth N e 5 e
NERSC 183Gb/s/ / 32}Gb/\
* ESnet Project: Aim to achieve a 163 G Gbls

production capability of 1 PB/week ‘ I /<—17oeb/s—
(FS to FS, also HPSS to HPSS)

across major compute sites 176 Gblx10,0 Gbis 240 CV 19 5 Gbis e
| \\ / 14.8 GbiS e
e Status: Success achieved! numbers
| . ! ‘ NCSA
from a simulation dataset “transfer test
paCkage” (4 TB) Petascale DTN project, courtesy Eli Dart,

e Future: Automate entire process
within the data workflow including

HEP-CCE/ESnet supported joint project
retrieval from archival storage
(HPSS); add more compute/data hubs

(BNL underway, just solved Globus- &

dCache handshake problem) globus online HEP-CCE

ESnet

ENERGY SCIENCES NETWORK




Summary

Is HPC the solution you have been waiting for?
» Not quite, but —

» It might be a solution you can live with (provided software upgrades are
doable and straitjacketing is acceptable)

» It might be a solution you will have to live with (power, money)

Compute/data model evolution

» What happens when compute is free but data motion and storage are
both expensive?

» Investment in appropriate networking infrastructure and storage

Will require nontraditional cross-office agreements
» Individual experiments too fine-grained, need a higher-level arrangement
» Will require changes in ASCR’s computing vision (“superfacility” variants)
» ASCR is not a “support science” office, prepare for the bleeding edge!

Natural synergy with HEP in many places
» Use this to leverage available software/experience/capabilities
» Use HEP-CCE, HSF, other points of interaction such as ECP and SciDAC



