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The Short-Short Version

We use ML almost everywhere, and we’ve moved to a real-time calibration
system putting much “analysis” online—to enable great science!



LHCb Detector

LHCb is a forward Spectrometer (2 <n <5)
(roughly 1-159°)

JINST 3 (2008) S08005
Int.J.Mod.Phys. A 30(2015) 1530022

RICH




JINST 8 (2013) P04022 Real T|me PfOCGSSlng

Simple feature-building in custom
electronics (e.g. FPGAs) required to reduce
the data volume to a transferable rate.

Online computing farm
processes 250 PB / year,
can only persist 1% of this.

(post zero suppression) RS
50 GB/s

LHCb will move to a triggerless-readout system for
LHC Run 3 (2021-2023), and process 5 TB/s in real
time on the CPU farm.




Real-Time Processing (Run 2)

1 TB/s ; 40 MHz

( FPGA-based hardware J

50 GB/s l 1 MHz

p
Real-time reconstruction for

all charged particles with pr
> 0.5 GeV (25k cores).
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8 GB/s ¢ 100 kHz
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Data buffered on 10 PB
disk while alignment/
L calibration done.
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Full real-time reconstruction
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Precision measurements benefit greatly
from using the final (best) reconstruction
iIn the online event selection—need real-
time calibration!

Final event selection done with access to
best-quality data (mostly done during
down time between fills), removing the
need (but perhaps not the desire) to
retain the ability to re-reconstruct the data
offline.

l—p 5 PB/year (mix of full events & ones

where only high-level info kept)



Real-Time Processing (Run 2)
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Heavy use of machine learning algorithms
throughout the Run 1 and Run 2 trigger.

V.Gligorov, MW, JINST 8 (2012) P02013.

70% of output events here classified
using ML algorithms.

40% of output events here classified
using ML algorithms.

ML also used online in tracking, particle
ID, etc. (more on this later).

l—p 5 PB/year (mix of full events & ones

where only high-level info kept)



Real-Time Processing (Run 3)

5 TB/s 40 MHz

p
Real-time reconstruction for

all charged particles with pr
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> 0.5 GeV.
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Data buffered on disk while
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Performing the charged-particle
reconstruction on 5 TB/s of data in real
time will be a challenge. Investigating ALL
options here — use ML to speed it up?
(Indeed, we already do some of this.)

Keeping the vast wealth of physics data
will also be a challenge. Plan to migrate
most of remaining classification to ML-
based algorithms. Autoencoder-based
data compression?

We are also working on ML-based
anomaly detection.

|l—p 20 PB/year (mostly only high-level info

kept, few RAW events to be stored)



N.b., real-time alignment and calibration is NOT required to
use ML in an online system.

We first introduced ML into our primary event-classification
algorithm at the start of 2011 data taking, but real-time
calibrations were not implemented until 2015.

Our Run 1 ML-based trigger algorithm collected the data
used Iin about 200 papers to date — and it was run on
imperfect data (but designed to be robust against run-time
instabilities).



Real-Time Calibration
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Run in the trigger on all tracks, so must be super fast. Use

Fake-Track Killer

Fake-track-killing neural network, most important features are hit multiplicities
and track-segment chi2 values from tracking subsystems.

LHCb-PUB-2017-011
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Candidates / (1 MeV/c?)

Open Charm

o(cc)[13TeV] shown @ EPS (2015) within a
week of recording the data; it was measured
using online-reconstructed data. We achieved
better mass and lifetime resolution online than
we had offline in Run 1.
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Charged PID: determining \ '\
whether a track originates ¥\’
fromane, Y, m K, p, or fake. S8

Info from the tracking,
calorimeter, RICH, and
muon systems all play an
important role here—and
are correlated.
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PID NNs

Single-hidden-layer NN trained on 32 features from all subsystems. Each is
trained to identify a specific type of particle (or fake track).
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Typically get a factor of 3x less pion contamination in a muon sample than
using the CombDLL approach — 10x less in a dimuon sample!

Currently exploring state-of-the-art: XGBoost ~ Deep NN ~ 50% less BKGD
than basic BDT or ANN, which again give 2-3x less BKGD than DLLSs.
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Dark Photons?

New triggers in 2016 for both prompt and displaced dark-photon searches
(rely heavily on advances to the LHCb online system in Run 2).

A ' L ' ' e et ' ' L
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s
104i
3 Prompt trigger
10 output, no offline
102 reconstruction!
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See proposed search in llten, Soreq, Thaler, MW, Xue, PRL 116, 251803
(2016) [1603.08926].
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ML Jet Tagging

2-D BDT plane (nearly) optimally utilizes 10-D info to ID b, ¢, and light jets.
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JINST 10 (2015) P06013
LHCb-PAPER-2015-016
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Performance validated & calibrated using large heavy-flavor-enriched jet data
samples (2-D data validation much easier than 10-D!). Some analyses cut on
these BDT responses, others fit the 2-D distributions to extract b,c,| yields.
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ML in Analysis

LHCb-PAPER-2017-001

Continuing to move beyond just
cutting on response ... Calibrate
BDT to have uniform response on
Bs— UM signal, bin data in BDT
response and analyze all dimuon
mass distributions simultaneously.

Constraints added to the likelihood
for relationships between yields
and shapes of the various
components from bin to bin.
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Detalls

*We typically train our ML algorithms on MC, then characterize their performance using
data control samples (same way we characterize our hardware). In principle, data samples
could also be used in the training, but then one would need to deal with BKGD in those
samples (and wait for data to be taken to do the training).

Dimensional reduction achieved by ML makes it possible to maximize performance
without complicating data-driven validation. There are many standard candles at the LHC
to use for data-driven validation.

o|t’s vital to collect the data samples required for calibration in the trigger! Typically this
means some tag-and-probe control modes, where the response is calculated and stored
but not cut on.

*As an aside, systematics tend to scale with inefficiency, so a highly-performant black box
often incurs a smaller systematic than a simple, less performant algorithm — and also is
easier to deal with than hardware.

Bottom line: We use ML because it enables great science. It greatly improves
performance in many areas, even converting some measurements from infeasible to
simple & precise.
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Tools, etc.

L HCb uses a python API to configure C++ objects, i.e. everybody writes in python,
experts write the C++. The code is versioned in git, and managed in gitlab.

*ML algorithms used to be mostly ROOT’s TMVA , but are now migrating more and more
to scikit-learn, Keras, etc.; i.e., we are moving away from physics-specific software and
towards the tools used by the wider ML community. Hyper-parameter tuning using
spearmint, hyperopt, etc. (see also liten, MW, Yang [1610.08328]).

Custom loss functions, e.g., response is de-correlated from some set of features
(Stevens, MW [1305.7248]; Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW
[1410.4140]). Already used in several papers (e.g. LHCb, PRL 115 (2015) 161802), and
currently being used in many papers to appear soon.

Many useful tools provided in the HEP-ML package pypi.python.org/pypi/lhep_ml/0.2.0,
which is basically a wrapper around sklearn, and in REP https://github.com/yandex/rep
(both produced by our colleagues at Yandex).
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VA Third Machine Learning in High Energy
‘ Physics Summer School 2017

17-23 July 2017
Reading

Overview
Timetable

School information

.. Speakers

.. Social programme
.. Important dates
.. Committees

. MLHEP participants
- feedback

Local information

L. Visa
.. Accomodation
L. Getting to Reading

Registration fee
Registration form

Frequently asked
questions

The Third Machine Learning summer school organized by Yandex School of Data
Analysis, Laboratory of Methods for Big Data Analysis of National Research University
Higher School of Economics and Imperial College London will be held in Reading, UK
from 17 to 23 July 2017.

The school is intended to cover the relatively young area of data analysis and
computational research that has started to emerge in High Energy Physics (HEP). It is
known by several names including “Multivariate Analysis”, "Neural Networks”,
“Classification/Clusterization techniques”. In more generic terms, these techniques
belong to the field of "Machine Learning”, which is an area that is based on research
performed in Statistics and has received a lot of attention from the Data Science
community.

There are plenty of essential problems in High energy Physics that can be solved using
Machine Learning methods. These vary from online data filtering and reconstruction to
offline data analysis.

Students of the school will receive a theoretical and practical introduction to this new
field and will be able to apply acquired knowledge to solve their own problems. Topics
ranging from decision trees to deep learning and hyperparameter optimization will be
covered with concrete examples and hands-on tutorials. A special data-

science competition will be organized within the school to allow participants to get better
feeling of real-life ML applications scenarios.
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Summary

LI
1N

Real-time calibration works, moving to a triggerless readout will provide even
bigger gains, ML usage is ubiquitous — all of these enable great science!



