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The Large Hadron Collider

70 institutes
16 countries
700 physicists
Almost 400 papers!

LHCb {



The Short-Short Version

We use ML almost everywhere, and we’ve moved to a real-time calibration 
system putting much “analysis” online—to enable great science!
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LHCb Detector

JINST 3 (2008) S08005
Int.J.Mod.Phys. A 30(2015) 1530022

LHCb is a forward Spectrometer (2 < η < 5)
(roughly 1-15o)
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Real-Time Processing
Simple feature-bu i ld ing in custom 
electronics (e.g. FPGAs) required to reduce 
the data volume to a transferable rate.

TB/s
(post zero suppression)

50 GB/s

LHCb will move to a triggerless-readout system for 
LHC Run 3 (2021-2023), and process 5 TB/s in real 
time on the CPU farm.

JINST 8 (2013) P04022

Online computing farm 
processes 250 PB / year, 
can only persist 1% of this.



6

Real-Time Processing (Run 2)

Real-time reconstruction for 
all charged particles with pT 
> 0.5 GeV (25k cores).

Data buffered on 10 PB 
disk while alignment/

calibration done.

Full real-time reconstruction 
for all particles available to 
select events.

50 GB/s

8 GB/s

5 PB/year (mix of full events & ones 
where only high-level info kept)

Precision measurements benefit greatly 
from using the final (best) reconstruction 
in the online event selection—need real-
time calibration!

Final event selection done with access to 
best-quality data (mostly done during 
down time between fills), removing the 
need (but perhaps not the desire) to 
retain the ability to re-reconstruct the data 
offline.

FPGA-based hardware

1 TB/s 40 MHz

1 MHz

100 kHz
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Real-Time Processing (Run 2)

Real-time reconstruction for 
all charged particles with pT 
> 0.5 GeV (25k cores).

Data buffered on 10 PB 
disk while alignment/

calibration done.

Full real-time reconstruction 
for all particles available to 
select events.

50 GB/s

8 GB/s

5 PB/year (mix of full events & ones 
where only high-level info kept)

Heavy use of machine learning algorithms 
throughout the Run 1 and Run 2 trigger.

V.Gligorov, MW, JINST 8 (2012) P02013.

70% of output events here classified 
using ML algorithms. 

40% of output events here classified 
using ML algorithms. 

ML also used online in tracking, particle 
ID, etc. (more on this later).

FPGA-based hardware

1 TB/s 40 MHz

1 MHz

100 kHz
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Real-Time Processing (Run 3)

Real-time reconstruction for 
all charged particles with pT 
> 0.5 GeV.

Data buffered on disk while 
alignment/calibration done.

Full real-time reconstruction 
for all particles available to 
select events.

20 PB/year (mostly only high-level info 
kept, few RAW events to be stored)

Per fo rm ing the cha rged -pa r t i c l e 
reconstruction on 5 TB/s of data in real 
time will be a challenge. Investigating ALL 
options here — use ML to speed it up? 
(Indeed, we already do some of this.)

Keeping the vast wealth of physics data 
will also be a challenge. Plan to migrate 
most of remaining classification to ML-
based algorithms. Autoencoder-based 
data compression? 

We are also working on ML-based 
anomaly detection.

5 TB/s 40 MHz



N.b., real-time alignment and calibration is NOT required to 
use ML in an online system. 

We first introduced ML into our primary event-classification 
algorithm at the start of 2011 data taking, but real-time 
calibrations were not implemented until 2015.

Our Run 1 ML-based trigger algorithm collected the data 
used in about 200 papers to date — and it was run on 
imperfect data (but designed to be robust against run-time 
instabilities). 



Real time alignment and calibration

23

alignment and calibration alignment

Online alignment stability

update alignment constants only when above threshold
(dashed lines)

VELO opens and closes each fill (protect sensors during
injection): expect updates every few fills
tracking system (TT, IT, OT): expect updates every few weeks
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Real-Time Calibration

VELO opens/closes every fill, expect 
updates every few fills. Rest of 
tracking stations only need updated 
every few weeks.

RICH gases indices of refraction must be 
calibrated in real time; requires ~1 min to 
run, and new calibrations are required for 
each run.

Calibration data is sent to a separate 
“stream” from the physics data after the 
first software-trigger stage. This permits 
running the calibrations on the online farm 
simultaneously with running the trigger.

10
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FIG. 2. Side view of the LHCb RICH detector upstream of the
magnet.

system, and calibrate the refractive index of radiators and
the HPD image with good precision. These factors are all
time-dependent, necessitating real-time calibration and
alignment of the LHCb RICH detectors, and the tracking
system.
Calibration and alignment
Calibration of the refractive index of the RICH radi-
ators

The refractive index of the gas radiators depends on
the ambient temperature and pressure, and the exact
composition of the gas mixture; so it can change in time.
These quantities are monitored by hardware to compute
an expected refractive index, but this does not have a
precision that is high enough for the physics analysis,
therefore it needs to be further corrected. As shown in
Fig. 3, the distribution of the difference between the re-
constructed and expected Cherenkov angle is fitted to ob-
tain the shift, which is then converted to a scale factor of
the expected refractive index according to studies based
on simulation.

About 50 Hz of events are sent to multiple online re-
construction tasks, which run in parallel, and the result-
ing histograms are merged at the end of each run. Then
a dedicated task is used to fit the histograms merged run-
by-run and produce calibration constants to be used by
the RICH reconstruction in the final stage of the software
trigger. The maximum run length is one hour.
Calibration of the HPD images

The Hybrid Photon Detector is used to detect
Cherenkov photons. As shown in Fig. 4, the photoelec-
tron produced at the photocathode is accelerated by a
high voltage of up to 20 kV onto a reverse-biased pixel-
lated silicon detector, with a de-magnification factor of

delta(Cherenkov Theta) / rad
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FIG. 3. Difference between the reconstructed and expected
Cherenkov angle before the calibration.

FIG. 4. Schematic drawing of the Hybrid Photon Detector
(HPD).

about 5 [6]. The HPD anode images are affected by the
magnetic and electric fields, and have been observed to
move and change their size, possibly due to changes in
these residual fields when the high voltage is cycled each
LHC fill. Such changes could degrade the reconstruction
of the Cherenkov angle and affect the PID performance.
Therefore the centre and radius of all the HPD images
are calibrated run-by-run. Figure 5 shows the calibra-
tion process. First, the centre of the image is cleaned to
eliminate ion feedback. Then a Sobel filter is used to de-
tect the edges of the image that are fitted to determine
the centre and the radius of the image, which are used by
the RICH reconstruction in the final stage of the software
trigger. As only the raw HPD data needs to be decoded,
more than 500 Hz of events are processed run-by-run.
Alignment of the RICH mirror system

The Cherenkov photons emitted by the charged parti-
cles passing through the RICH detectors are focused onto
the photon-detector plane by the spherical and secondary
mirrors. In case of misalignment the centre of Cherenkov
ring would not correspond to the intersection point of the
charged track, and this would introduce a dependence
of the difference between the measured and expected
Cherenkov angle on the azimuthal angle of the ring, as



Fake-Track Killer

ML for fake track probability
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Fake track probability based on TMVA NN (CE estimator), most important features are hit 
multiplicities and partial chi2 information in different tracking subdetectors. Main 
timing cost network evaluation, custom activation function for speed. Extensive use of 
code profiling and autovectorization to optimize the .C output of TMVA for speed.

De Cian et al. 
LHCb-PUB-2017-011

Fake-track-killing neural network, most important features are hit multiplicities 
and track-segment chi2 values from tracking subsystems. 

Run in the trigger on all tracks, so must be super fast. Use of custom 
activation function and highly-optimized C++ implementation. 

LHCb-PUB-2017-011

11
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Open Charm

PRODUCTION MEASUREMENTS CHARM MESON CROSS-SECTIONS (arXiv:1510.01707)

D0, D+, D+
s , AND D⇤+ CROSS-SECTIONS

Integrated luminosity of 4.98 ± 0.19 pb�1.

Analysis of HLT2 candidates with Turbo
stream.

Separation of prompt and secondary
charm with log(IP�2) distribution,

p
pIP
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Figure 5: Measurements and predictions for the absolute prompt (top) D0, and (bottom) D+

cross-sections at
p

s = 13TeV. Each set of measurements and predictions in a given rapidity bin
is o↵set by a multiplicative factor 10�m, where the factor m is shown on the plots. The boxes
indicate the ±1� uncertainty band on the theory predictions. In cases where this band spans
more than two orders of magnitude only its upper edge is indicated.

9

LHCb-PAPER-2015-041

<x1> ~ 0.1, <x2> ~ 10-5

Results also published for D+, 
Ds, D* at both 7 and 13 TeV.

σ(cc)[13TeV] shown @ EPS (2015) within a 
week of recording the data; it was measured 
using online-reconstructed data. We achieved 
better mass and lifetime resolution online than 
we had offline in Run 1. 

Excellent probe of the small-x gluon PDF.

POWHEG+NNPDF [1506.08025], FONLL [1507.06197], 
GMVFNS [1202.0439]



Charged PID

Charged PID: determining 
whether a track originates 
from an e, μ, π, K, p, or fake.

Info from the tracking, 
calorimeter, RICH, and 
muon systems all play an 
important role here—and 
are correlated.

13
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PID NNs
Single-hidden-layer NN trained on 32 features from all subsystems. Each is 
trained to identify a specific type of particle (or fake track). 

Typically get a factor of 3x less pion contamination in a muon sample than 
using the CombDLL approach — 10x less in a dimuon sample!
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in 8TeV collision data, using a tag and probe technique with electrons from the decay B
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�)K±. Left, pion misidentication rate versus electron identification probability when
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Figure 43: Background misidentification rates versus muon (left) and proton (right) identification
e�ciency, as measured in the ⌃+ ! pµ

+
µ

� decay study. The variables �logL(X�⇡) (black) and
ProbNN (red), the probability value for each particle hypothesis, are compared for 5� 10GeV/c
muons and 5 � 50GeV/c protons, using data sidebands for backgrounds and Monte Carlo
simulation for the signal.

If the tracks identified as muons are also required to satisfy a selection using the combined
PID information (�logL

comb

(K � ⇡) < 10 and �logL
comb

(µ� ⇡) > �5), the B0
(s) ! h

+
h

�

misidentification probability is reduced by a factor of ⇠ 6, whilst only ⇠ 3% of the
B

s

! µ

+
µ

� signal is lost.
The possible improvement of the multivariate approach with respect to the simple log

likelihood may also be illustrated by the ongoing search for the flavour-changing neutral
current decay ⌃+ ! pµ

+
µ

�. In Figure 43 the misidentification rates versus e�ciency curves

57

Currently exploring state-of-the-art: XGBoost ~ Deep NN ~ 50% less BKGD 
than basic BDT or ANN, which again give 2-3x less BKGD than DLLs.
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Dark Photons?
New triggers in 2016 for both prompt and displaced dark-photon searches 
(rely heavily on advances to the LHCb online system in Run 2). 

Prompt trigger 
output, no offline 
reconstruction!

See proposed search in Ilten, Soreq, Thaler, MW, Xue, PRL 116, 251803 
(2016) [1603.08926].
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Figure 6: From a b-jet and c-jet enriched data sample of Ref. [11]: (left) SV-tagger BDT
responses observed in data (annotation added here to show roughly where jets of each type
are found); (middle) projection onto the x-axis; and (right) projection onto the y-axis. The
BDT templates shown here were obtained from simulation. This and similar data samples
were used to calibrate the BDT responses for use in physics analyses.

simulation was known to model heavy-flavor hadron decays well, whereas the description of
jet properties had not yet been fully validated using data. Figure 6 shows that despite this
simplified approach, the separation between b-jets, c-jets and light-parton jets is excellent.

For Run 2, we plan to investigate using additional information to improve the perfor-
mance. We also plan to approach this as a true 3-class problem, rather than two 2-class
ones. As part of the jet-tagging development, we will update our bb̄ charge asymmetry mea-
surement [5] and make the first such measurement for cc̄. Recall that Ref. [37] suggested
that �(cc̄)/�(bb̄) provides a good standard candle to use in c-tagging calibration; therefore,
it makes sense to add these dijet measurements into the tagging-development project.

6.2.2 Intrinsic Strangeness and Charm

Whether there is intrinsic (non-perturbative) charm (IC) content in the proton at the ⇡ 1%
level is an open (and hotly debated) question. There is theoretical interest in the role that
non-perturbative dynamics play in the nucleon sea. Furthermore, the presence of IC in
the proton would a↵ect the production cross sections of many processes at the LHC either
directly, by scattering o↵ of a large-x c or c̄; or indirectly, since altering the charm PDF
would a↵ect the gluon PDF via the momentum sum rule. Ref. [44] considers two models
where the IC is valence-like (BHPS1, BHPS2) and two where it is sea-like (SEA1, SEA2).
LHCb has direct sensitivity to IC by measuring Z + c production, which can proceed via
gc! Zc. We performed a preliminary study of how these IC models a↵ect Z + c production
at LHCb. Figure 7 shows the relative increase in Z +c production when IC is included in the
proton. These valence-like models will be easily distinguishable in Run 2 at LHCb, while the
sea-like models may be distinguishable in Run 3. We propose to perform this measurement
using our c-jet tagging algorithm.

Intrinsic strangeness in the proton is well established. The s and s̄ PDFs are typically
assumed to be identical, but they need not be. Figure 7 shows the shift in the W + c
charge asymmetry that LHCb would observe for the charge-asymmetric strangeness PDFs
from Ref. [45] (some of these models may now be ruled out; the point here, however, is that
observably large asymmetries may occur in W + c production). Phil and I measured W + c

Performance validated & calibrated using large heavy-flavor-enriched jet data 
samples (2-D data validation much easier than 10-D!). Some analyses cut on 
these BDT responses, others fit the 2-D distributions to extract b,c,l yields.

2-D BDT plane (nearly) optimally utilizes 10-D info to ID b, c, and light jets.

JINST 10 (2015) P06013
LHCb-PAPER-2015-016

ML Jet Tagging



1.5 Branching fraction analysis results
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Figure 17: Mass distributions of the selected B0

(s)

! µ+µ� candidates (black dots) in bins of

BDT. The result of the fit is overlaid (blue solid line) and the di↵erent components are detailed:
B0

s

! µ+µ� (red long dashed), B0 ! µ+µ� (green medium dashed), combinatorial background
(blue short dashed), B0

(s)

! h+h0� (magenta dotted), B0 ! ⇡�µ+⌫
µ

and B0

s

! K�µ+⌫
µ

(black

dot-dashed), B0(+) ! ⇡0(+)µ+µ� (cyan dot-dashed), B+

c

! J/ µ+⌫
µ

(orange dot-dashed) and
⇤0

b

! pµ�⌫̄
µ

(violet dot-dashed).
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Continuing to move beyond just 
cutting on response … Calibrate 
BDT to have uniform response on 
Bs→μμ signal, bin data in BDT 
response and analyze all dimuon 
mass distributions simultaneously.  

Constraints added to the likelihood 
for relationships between yields 
and shapes of the var ious 
components from bin to bin.

ML in Analysis

LHCb-PAPER-2017-001

17



Details
•We typically train our ML algorithms on MC, then characterize their performance using 
data control samples (same way we characterize our hardware). In principle, data samples 
could also be used in the training, but then one would need to deal with BKGD in those 
samples (and wait for data to be taken to do the training).

•Dimensional reduction achieved by ML makes it possible to maximize performance 
without complicating data-driven validation. There are many standard candles at the LHC 
to use for data-driven validation.

•It’s vital to collect the data samples required for calibration in the trigger! Typically this 
means some tag-and-probe control modes, where the response is calculated and stored 
but not cut on.

•As an aside, systematics tend to scale with inefficiency, so a highly-performant black box 
often incurs a smaller systematic than a simple, less performant algorithm — and also is 
easier to deal with than hardware.

•Bottom line: We use ML because it enables great science. It greatly improves 
performance in many areas, even converting some measurements from infeasible to 
simple & precise.
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Tools, etc.

•LHCb uses a python API to configure C++ objects, i.e. everybody writes in python, 
experts write the C++. The code is versioned in git, and managed in gitlab. 

•ML algorithms used to be mostly ROOT’s TMVA , but are now migrating more and more 
to scikit-learn, Keras, etc.; i.e., we are moving away from physics-specific software and 
towards the tools used by the wider ML community. Hyper-parameter tuning using 
spearmint, hyperopt, etc. (see also Ilten, MW, Yang [1610.08328]).

•Custom loss functions, e.g., response is de-correlated from some set of features 
(Stevens, MW [1305.7248]; Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW 
[1410.4140]).  Already used in several papers (e.g. LHCb, PRL 115 (2015) 161802), and 
currently being used in many papers to appear soon.

•Many useful tools provided in the HEP-ML package pypi.python.org/pypi/hep_ml/0.2.0, 
which is basically a wrapper around sklearn, and in REP https://github.com/yandex/rep 
(both produced by our colleagues at Yandex).
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Summary

Real-time calibration works, moving to a triggerless readout will provide even 
bigger gains, ML usage is ubiquitous — all of these enable great science!


