

ALFA:

A common concurrency, message based framework for ALICE and FAIR experiments

Mohammad Al-Turany GSI scientific computing

This talk

Introduction: GSI / FAIR

FairRoot

From FairRoot to ALFA

Basic features and components of ALFA

Examples and Prototypes

Nuclear Physics

Nuclear reactions Superheavy elements Hot dense nuclear matter

Atomic Reactions Precision spectroscopy of highly charged ions

Biophysics and radiation medicine

Radiobiological effect of ions Cancer therapy with ion beams

Plasma Physics

Hot dense plasma Ion-plasma-interaction

Materials Research

Ion-Solid-Interactions Structuring of materials with ion

beams

Accelerator Technology

Linear accelerator Synchrotrons and storage rings

- Atomic Physics and Fundamental Symmetries,
- Plasma Physics,
- **APPA** Materials Research,
 - Radiation Biology,
 - Cancer Therapy with Ion Beams / Space Res.
- **CBM** Dense and Hot Nuclear Matter
- **NUSTAR** Nuclear Structure far off stability, Physics of Explosive Nucleosynthesis (r process)
- PANDA _ Hadron Structure & Dynamics with cooled antiproton beams

CBM

NUSTAR

APPA

CBM & PANDA

- More than 500 members each
- HEP like detector systems

APPA & NUSTAR

- 700-800 members each
- Many small detectors / sub-collaborations

PANDA

CBM

NUSTAR

APPA

A unifying element: Detector Readout

- Continuous readout with self-triggered front-end electronics
- Event definition & selection requires
 - full reconstruction in online compute farms
 - No or limited hardware triggers
 - Convergence of on- and offline software

PANDA

CBM

NUSTAR

Computing at FAIR APPA 1 TByte/s into online farms 35 PByte/year on disk ~300.000 cores at Tier 0 ~100.000 cores distributed PANDA

05/05/2017

FairRoot

fairroot.gsi.de

How it started?

- CBM collaboration 2003 We need simulations for the LOI
 - It has to be easy, fast, reliable, ...etc
 - We have no manpower for software

Software for FAIR Experiments (FairRoot)

Agreement between GSI-IT management and the experiments to create a core team in the IT with participation of the experiment

After decision by Panda collaboration to use CbmRoot, the common part was called FairRoot

Software for FAIR Experiments (FairRoot)

FAIR and non-FAIR experiments join the effort to build one platform for simulation and reconstruction software

What about

Heterogeneous architectures

• Accelerator cards (GPUs, Xeon Phi, etc)

Concurrency?

- Multi-/Many-Core
- SIMD

Online computing?

About 3 TByte/s detector readout

Storage bandwidth 90 GByte/s

Many physics probes have low S/B:

classical trigger/event filter approach not efficient

Store only reconstruction results, discard raw data

Data reduction by (partial) online reconstruction and compression

>100.000 cores + GPUs + FPGAs

Implies much tighter coupling between online and offline reconstruction software

Two projects – same requirements

Massive data volume reduction

Data reduction by (partial) online reconstruction

Online reconstruction and event selection

ALICE – FAIR Framework: ALFA

- Developed in common by FairRoot Group (GSI), FAIR experiments and ALICE
- Has data-flow based model (Message Queues based multi-processing)
- Provides configuration, process management and monitoring tools
- Provides unified access to configuration parameters and databases

Scalability through multi-processing with message queues?

Each process assumes limited communication and reliance on other processes.

- No locking, each process runs with full speed
- Easier to scale horizontally to meet computing and throughput demands (starting new instances) than applications that exclusively rely on multiple threads which can only scale vertically.

Correct balance between reliability and performance

Each "Task" is a separate process, which:

- Can be multithreaded, SIMDized, ...etc.

– runs on different hardware (CPU, GPU, ..., etc.)

 Be written in an any supported language (Bindings for 30+ languages)

Different topologies of tasks can be adapted to the problem itself, and the hardware capabilities

M. Al-Turany, Future Trends in Nuclear Physics Computing

ALFA uses FairMQ to connect different pieces together

FairRoot: Where we are now?

- Task hierarchy (User code) runs sequentially in one process
- Tasks implement only algorithms (can be exchanged/replaced)

With FairMQ (ALFA)

- Each Task is a process (can be Multi-threaded)
- Message Queues for data exchange
- Support multi-core and multi node

With FairMQ (ALFA)

- Each Task is a process (can be Multi-threaded)
- Message Queues for data exchange
- Support multi-core and multi node

Message format ?

The framework does not impose any format on messages.

It supports different serialization standards

- BOOST C++ serialization
- Google's protocol buffers
- ROOT
- Flatbuffers
- MessagePack
- User defined

How to deploy ALFA on a laptop, few PCs or a cluster?

DDS: Dynamic Deployment System

Users describe desired tasks and their dependencies using topology (graph) files

Users are provided with a WEB GUI to create topology (Can be created manually as well).

The system takes so called "topology file" as the input.

DDS

GPUs in ALFA

GPUs and Message Queues

Ludovico BIANCHI

- Explore communication/data transfer to GPUs
- FairMQ: implementation of Message Queues in the FairRoot framework (PApr 14: M. Al-Turany, A. Rybalchenko, F. Uhlig)
- Test system with implementation of Circle Hough algorithm
 - Modular structure
 - CPU and GPU version of processing task
 - FairMQ: stream input data to CPU/GPU processing tasks
 - Maximum flexibility of architecture and data transfer interface

http://indico.cern.ch/event/304944/session/1/contribution/363

Is the data processing strategy feasible?

Can we create a small scale but yet realistic processing topology ?

O2 Facility

3.1 TB/s

M. Al-Turany, Future Trends in Nuclear Physics Computing

The prototype:

In ALICE 92.5% of the data is generated by the TPC

focus on TPC processing

The data from the TPC front-end will arrive via multiple links in the FLP nodes

use present readout layout with 216 links

Local cluster reconstruction is running on hardware accelerator cards in real-time on the input streams

Prototype start with clusters (space points) in the main memory of FLP nodes

• 36 Data sources

- 36 x 6 cluster publisher
- 36 Merger (Data relay)
- 36 FLP Sender

216+36+36 = 288 processes

FLP: First level data processer

- 28 recievers
- 28 Trackers (GPU)
- 28 Track mergers

28+28+28 = 84 processes

EPN: Event Processing Node

Hardware

- Small scale test environment (40 nodes) using parts of existing ALICE HLT development cluster :
 - 16 core Intel Xeon 2.26 GHz
 - 24 core AMD Opteron 2.1 GHz
 - GPU used as accelerator card for particle track finding
- Network protocol IP over InfiniBand

Results

- The topology is processing aggregated size of 1.6 GByte/s (limited by the cluster publishers)
- FLP to EPN data transportation prove to fulfill the requirement
- Efficient process scheduling and deployment system tested with the prototype
- System is ready for larger test

How to switch form root single-core processing (FairRoot Tasks) to FairMQ multi-core pipeline processing

Radoslaw Karabowicz, GSI

FairRoot/Examples/MQ/9-PixelDetector

• Detector simulation,

- Digitization,
- reconstruction (hit finding, tracking, track fitting),
- Shows how to switch from root single-core processing to FairMQ multi-core pipeline processing.

https://github.com/FairRootGroup/FairRoot/tree/master/examples/MQ/9-PixelDetector

fairroot/examples/MQ/9-PixelDetector

- 3 stations with 4 rectangular sensor each:
 - size: 5x 5cm², inner hole: 1x1cm², at z = 5cm;
 - size: 10x10cm², inner hole: 1x1cm², at z = 10cm;
 - size: 20x20cm², inner hole: 2x2cm², at z = 20cm;
- each sensor divided into pixels (0.01x0.01cm²), that are grouped into FE modules (110 pixels x 116 pixels)

FE 5					
FE 4	FE 68				
FE 3	FE 67	FE 131			
FE 2	FE 66	FE 130	FE 194		
FE 1	FE 65	FE 129	FE 193	FE 257	

EEs numbering on one sensor

Radoslaw Karabowicz, GSI

data classes, tasks and macros

4

data classes, tasks and macros

Example topology

27th CBM CM, 13.04.2016

Each sampler reads

Other topologies:

Test of FairMQ with Real Data

- Parallel readout of 4 pixel detectors
- Readout done by 4 FPGA boards sending their data to two PCs
- On the PC bitstream converted into raw data
- Raw data send via FairMQ to a FileSink

Tobias Stockmanns

https://indico.cern.ch/event/505613/contributions/2227258/

Single Front-End

Multiple Front-Ends

Online Monitoring

- Running on 6 PC
 - 4 for each FE
 - 1 for tracking
 - 1 for control

More about FairRoot/ALFA

Backup

DDS Plugins

- 1. dds-commander starts a plugin based on the dds-submit parameter,
- 2. plugin connects back to dds-commander,
- 3. plugin receives submission details,
- 4. plugins takes WN package and deploys it to WNs.