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Chapter 3
The International Linear Collider
Accelerator

3.1 The ILC Technical Design
3.1.1 Overview

The International Linear Collider (ILC) is a high-luminosity linear electron-positron collider based on
1.3 GHz superconducting radio-frequency (SCRF) accelerating technology. Its centre-of-mass-energy
range is 200–500 GeV (extendable to 1 TeV). A schematic view of the accelerator complex, indicating
the location of the major sub-systems, is shown in Fig. 3.1:
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Figure 3.1. Schematic layout of the ILC, indicating all the major subsystems (not to scale).

• a polarised electron source based on a photocathode DC gun;

• a polarised positron source in which positrons are obtained from electron-positron pairs by
converting high-energy photons produced by passing the high-energy main electron beam
through an undulator;

• 5 GeV electron and positron damping rings (DR) with a circumference of 3.2 km, housed in a
common tunnel;

• beam transport from the damping rings to the main linacs, followed by a two-stage bunch-
compressor system prior to injection into the main linac;

• two 11 km main linacs, utilising 1.3 GHz SCRF cavities operating at an average gradient of
31.5 MV/m, with a pulse length of 1.6 ms;
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Frontiers
• Energy Frontier: Large Hadron Collider (LHC) at 13 TeV now, High Luminosity (HL)- 

LHC by 2025, perhaps 33 TeV LHC or 100 TeV Chinese machine in a couple of 
decades.  

• Having found Higgs, moving to studying the SM Higgs find new Higgses 

• Test naturalness (Was the Universe and accident?) by searching for New Physics 
like Supersymmetry that keeps Higgs light without 1 part in 10

18 
fine-tuning of 

parameters.   

• Find Dark Matter (reasons to think related to naturalness) 

• Intensity Frontier:  

• B Factories: upcoming SuperKEKB/SuperBelle 

• Neutrino Beam Experiments:  

• Series of current and upcoming experiments: Nova, MicroBooNE, SBND, 
ICURUS 

• US’s flagship experiment in next decade: Long Baseline Neutrino Facility 
(LBNF)/Deep Underground Neutrino Experiment (DUNE) at Intensity 
Frontier

• Measure properties of b-quarks and neutrinos (newly discovered mass)… search 
for matter/anti-matter asymmetry. 

•  Auxiliary Physics: Study Supernova. Search for Proton Decay and Dark Matter.   

• Precision Frontier: International Linear Collider (ILC), hopefully in next decade. Most 
energetic e

+
e

-
 machine.  

• Precision studies of Higgs and hopefully new particles found at LHC.

● Long Baseline Neutrino 
Experiment is the next major 
neutrino experiment 
proposed

– Build a large scale (34 kTon) 
LArTPC deep underground

– Build it at a baseline that 
optimizes the oscillation 
parameters to probe CP 
violation and the mass 
hierarchy

– Build  it deep underground to 
maximize your sensitivity and 
allow you to do more physics

– Shoot a powerful beam of 
neutrinos at it

LBNELBNE
LLongong B Baselineaseline N Neutrinoeutrino E Experimentxperiment



Where is ML needed?
• Traditionally ML Techniques in HEP 

• Applied to Particle/Object Identification 

• Signal/Background separation 

• Here, ML maximizes reach of existing data/detector… equivalent to additional integral luminosity. 

• There is lots of interesting work here… but I’ll skip today. 

• Some slides in backup… 

• Now we hope ML can help address looming computing problems 

• Reconstruction 

• LArTPC- Algorithmic Approach very difficult 

• HL-LHC Tracking- Pattern Recognition blows up due to combinatorics 

• Simulation 

• LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation. 
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Reconstruction Chain
• Left: Our provisional 

 model for a DUNE FD  
   reconstruction chain. 
!
• Between LBNE and  
   LBNO, every step in 
   this chain exists. !
    - Great starting point 
       for DUNE! 
!
• Will summarise 
   current status over 
   next few slides.

LArTPC Reco Challenge
• Neutrino Physics has a long history of hand scans.  

• QScan: ICARUS user assisted reconstruction.   

• Full automatic reconstruction has yet to be 
demonstrated.  

• LArSoft project:  

• art framework + LArTPC reconstruction 
algorithm 

• started in ArgoNeuT and contributed to/used 
by many experiments. 

• Full neutrino reconstruction is still far from 
expected performance.

Selection of  νe events
•  Reference points and vertices can be defined to mark interesting 

features of the event in a 2D view (primary interaction, delta rays, 
decay point of tracks, shower features, muon begin/end point for the 
momentum measurement via MCS); 

•  They can be selected manually in Qscan and can be associated to 
clusters and matched between different views providing additional 
input to 3D reconstruction; 

•  An automatic tool for the primary vertex identification is available; 
•  Reference points and vertices can be saved in root files; 

Reference points and vertices

Slide#  : 9ICARUS_2015



Computing Challenge
• Computing is perhaps the biggest challenge for the HL-LHC 

• Higher Granularity = larger events. 

• O(200) proton collision / crossing: tracking pattern recognition 
combinatorics becomes untenable. 

• O(100) times data = multi exabyte datasets.  

• Moore’s law has stalled: Cost of adding more transistors/silicon area no longer 
decreasing…. for processors. Many-core co-processors still ok. 

• Naively we need 60x more CPU, with 20%/year Moore’s law giving only 
6-10x in 10-11 years. 

• Preliminary estimates of HL-LHC computing budget many times larger than 
LHC. 

• Solutions: 

• Leverage opportunistic resources and HPC (most computation power in 
highly parallel processors). 

• Highly parallel processors (e.g. GPUs) are already > 10x CPUs for certain 
computations. 

• Trend is away from x86 towards specialized hardware (e.g. GPUs, Mics, 
FPGAs, Custom DL Chips) 

• Unfortunately parallelization (i.e. Multi-core/GPU) has been extremely 
difficult for HEP.

Estimates of Resource Needs for HL-LHC (WLCG)

(Slide from WLCG Workshop Intro, Ian Bird, 8 Oct, 2016)
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Tracking
• Measure Charged particle trajectories. If B-field, then 

measure momentum.

PATTERN 

BANK

1 2 3 4
…

Track parameters found in a 2nd step

(more sequential, but fast if you used 

enough AM cells in the first stage)

A pattern is a sequence of hits in the different layers, represented by coordinates. 

A particle trajectory is a specific sequence of hits. Hit are read out sequentially, and 

compared in parallel to a set of pre-calculated “track patterns” - NO combinatorics. 

Based on 

custom ASIC

Matched 

patterns 

queued to 

 output. 

Track reconstruction by pattern-matching 

using “Associative Memory” 



Calorimetry
• Make particle interact and loose all energy, which we measure. 2 types:  

• Electromagnetic: e.g. crystals in CMS, Liquid Argon in ATLAS.

• Hadronic: e.g. steel + 
scintillators 

• e.g ATLAS: 

• 200K Calorimeter cells 
measure energy 
deposits. 

• 64 x 36 x 7 3D Image



LHC/ILC detectors



LARIAT MOTIVATION: NEEDS OF NEUTRINO EXPTS 
In neutrino experiments, try to determine flavor and estimate energy of 

incoming neutrino by looking at outgoing products of the interaction.  

2015/10/19 LARSOFT RECONSTRUCTION ASSESSMENT AND REQUIREMENTS WORKSHOP 2 

Incoming neutrino: 
 Flavor unknown 
 Energy unknown 

Outgoing lepton: 
 Flavor: CC vs. NC, !+ vs. !-, e vs. " 
 Energy: measure 

Mesons: 
 Final State Interactions 
 Energy? Identity? 

Outgoing nucleons: 
 Visible? Energy? 

Target nucleus: 
 Nucleus remains intact for low Q2 

 N-N correlations 

Typical neutrino event!

Jen Raaf

Neutrino Detection



Neutrino Detectors
• Need large mass/volume to maximize chance of neutrino interaction. 

• Technologies: 

• Water/Oil Cherenkov 

• Segmented Scintillators 

• Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.

• Provides tracking, calorimetry, and ID all in same detector. 

• Chosen technology for US’s flagship LBNF/DUNE program.  

• Usually 2D read-out… 3D inferred. 

• Gas TPC: full 3D 
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Principal of LArTPCPrincipal of LArTPC

LArTPCs make 3D reconstruction possible!

● wire planes give 2D position information
● the third dimension is obtained by combining timing information 
    with drift velocity (v

d
): x= v

d
(t-t

0
)  → hence, a “Time projection chamber”
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e/π0 Separation

• e/π0 separation can be achieved using topological and 
energy information.

- There is usually a gap between the photon conversion point 
and the neutrino interaction vertex.

- Electron and photon have different energy deposition profiles.

5

ArgoNeuT νe-CC candidate

2 π0’s

e/π0 Separation

• e/π0 separation can be achieved using topological and 
energy information.

- There is usually a gap between the photon conversion point 
and the neutrino interaction vertex.

- Electron and photon have different energy deposition profiles.
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HEP Computing

Reconstruction

Generation

Simulation

Digitization

Generation

Fast Simulation

Derivation

Statistical 
Analysis

KHz KHz

mHz

Hz

KHz
Hz

1000 
Hz

Hz

Hz

High-level Trigger

Fast Simulation

Data Analysis &
Calibration

Full Simulation

109 events/year 



• Starts with raw inputs  (e.g. Voltages)

• Low level Feature Extraction: e,g,  
Energy/Time in each Calo Cell

• Pattern Recognition: Cluster adjacent 
cells. Find hit pattern.

• Fitting: Fit tracks to hits.

• Combined reco: e.g.:

• Matching Track+EM Cluster = Electron. 

• Matching Track in inter detector + 
muon system = Muon

• Output particle candidates and 
measurements of their properties (e.g. 
energy)

EventSelector
Service

Tr
an

si
en

t 
D

at
a 

St
or

e

Cell 
Builder

Cell 
Calibrator

Cluster 
Builder

Cluster 
Calibrator

Jet Finder

Cell 
Correction A

Cell 
Correction B

Cluster 
Correction A

Cluster 
Correction B

Noise Cutter

Jet Finder

Jet 
Correction

Channels

Cells

Cells

Clusters

Clusters

Jets
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Fig. 4: (a): Pulse arriving in phase with respect to the 40MHz clock. (b): pulse arriving out of phase.

Fig. 5: Example of many pulses of random phases overlaid.
Normalized to unit amplitude and shifted to peak at t = 0 ns.

of the pulse is found reliably. The amplitude and mean of the
Gaussian are used to scale and shift the pulse shape.

C. Smoothing
The statistics in some energy bins is low. For this reason

before storing the pulse shapes for later use in the reconstruc-
tion, the shapes are smoothed. Two smoothing algorithms were
used: the built-in ROOT-function Smooth [5] and a spline
method [6]. The function Smooth is found to be sensitive to
larger statistical fluctuations, especially in the tail. The spline
method is the better of the two since it is insensitive to these
fluctuations, and therefore this method was adopted.

D. Energy bins
To distinguish between pulses of different energies, pulses

are sorted into energy bins. A measure of the energy of a
pulse, Q, is defined:

Q =
9∑

i=2

Si − 8 · S1, (2)

TABLE I: Definition of energy bins, based on number of
ADC counts.

Low gain High gain
Q-bin Q-value (counts) Q-value (counts)
Q0 30 < Q < 50 0 < Q < 10

Q1 50 < Q < 70 10 < Q < 50

Q2 70 < Q < 90 50 < Q < 100

Q3 90 < Q < 140 100 < Q < 200

Q4 140 < Q < 200 200 < Q < 400

Q5 200 < Q < 250 400 < Q < 800

Q6 250 < Q < 300 800 < Q < 1200

Q7 300 < Q < 350 1200 < Q < 1600

Q8 350 < Q < 400 1600 < Q < 2000

Q9 400 < Q < 800 2000 < Q < 10000

where S1, ...S9 are the nine samples measured for each
recorded pulse and S1 is the pedestal. The value of Q is used
to define bins as listed in table I.

V. PULSE-TO-PULSE VARIATIONS
After the pulse shapes have been normalized, all pulse

shapes, i.e. from all channels and all energies, can be overlaid.
The width of the band defined by all individual measurements
will show the maximum pulse-to-pulse variation. All pulse
shapes from low gain overlaid are shown in figure 6. A
widening of the band in the tail (right of the peak) is observed.
When the pulses are sorted into energy bins a narrowing

of the width of the band is observed, indicating some energy
dependence. Especially the tail region, beyond 60 ns, flattens
out with increasing value of Q.
In figure 7 (a), the mean pulse shapes for each energy bin

are overlaid. For low energies, there is an oscillation in the tail
which flattens out towards higher energy bins. This is shown
in figure 7 (b).

VI. TOY MONTE CARLO
One way of quantifying the difference between two pulse

shapes is to study the energy bias that would be introduced in

Reconstruction



Deep Learning



Artificial Neural Networks
• Biologically inspired computation, (first attempts in 1943) 

• Probabilistic Inference: e.g. signal vs background 

• Universal Computation Theorem (1989) 

• Common use in HEP, signal/background classification or particle 
ID with high-level features derived from raw data as input. 

• Multi-layer (Deep) Neutral Networks: 

• Not a new idea (1965), just impractical to train. Vanishing 
Gradient problem (1991) 

• Solutions: 

• New techniques: e.g. better activation or layer-wise training 

• More training: big training datasets and lots of computation 
… big data and GPUs 

• Deep Learning Renaissance. First DNN in HEP (2014). 

• Amazing Feats: Audio/Image/Video recognition, captioning, and 
generation. Text (sentiment) analysis. Language Translation. 
Video game playing agents.   

• Rich field: Variety of architectures, techniques, and applications. 
Images from Wikipedia

http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735


Recent History
• Deep Learning feats that sparked broad interest: 

• 2012, Google 1B DNN learns to identify cats (and 20000 
other types of objects) (Wired Article, paper) 

• Raw input: trained with 200x200 pixel images from 
YouTube 

• Unsupervised: the pictures were unlabeled. 

• Google cluster 16000 cores ~ $1M. Redone with $20k 
system with GPUs.  

• 2013: Deep Mind builds AI that plays ATARI (Blogpost, 
Nature,YouTube,YouTube)

http://www.wired.com/2014/12/deep-learning-renormalization/
http://static.googleusercontent.com/media/research.google.com/en/us/archive/unsupervised_icml2012.pdf
http://robohub.org/artificial-general-intelligence-that-plays-atari-video-games-how-did-deepmind-do-it/
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk


P.Baldi 

Computer Vision - Image Classification

● Imagenet
● Over 1 million images, 1000 

classes, different sizes, avg 
482x415, color

● 16.42% Deep CNN dropout in 
2012

● 6.66% 22 layer CNN (GoogLeNet) 
in 2014

● 4.9%  (Google, Microsoft) super-
human performance in 2015

Sources: Krizhevsky et al ImageNet Classification with Deep Convolutional Neural Networks, Lee et al Deeply supervised nets 2014, 
Szegedy et al, Going Deeper with convolutions, ILSVRC2014, Sanchez & Perronnin CVPR 2011, http://www.clarifai.com/

Benenson, http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html



Feedforward NNs

Convolutional NNs

Recurrent NNs

Recursive NNs

Memory NNs

Deep Belief Nets

Neural Turing Machines

Deep Q Learning

                  Institute for Computational 
& Mathematical Engineering |

Deep Dive into Deep Learning

Luke de Oliveira



(a) Azimuth (pose) (b) Elevation

(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from �1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

(a) Rotation (b) Width

Figure 4: Manipulating latent codes on 3D Chairs: In (a), we show that the continuous code
captures the pose of the chair while preserving its shape, although the learned pose mapping varies
across different types; in (b), we show that the continuous code can alternatively learn to capture the
widths of different chair types, and smoothly interpolate between them. For each factor, we present
the representation that most resembles prior supervised results [7] out of 5 random runs to provide
direct comparison.

8 Conclusion

This paper introduces a representation learning algorithm called Information Maximizing Generative
Adversarial Networks (InfoGAN). In contrast to previous approaches, which require supervision,
InfoGAN is completely unsupervised and learns interpretable and disentangled representations on
challenging datasets. In addition, InfoGAN adds only negligible computation cost on top of GAN and
is easy to train. The core idea of using mutual information to induce representation can be applied to
other methods like VAE [3], which is a promising area of future work. Other possible extensions to

7

https://arxiv.org/pdf/1606.03657.pdf

https://arxiv.org/pdf/1606.03657.pdf


Why go Deep?
• Better Algorithms 

• DNN-based classification/regression generally out perform hand crafted algorithms. 

• In some cases, it may provide a solution where algorithm approach doesn’t exist or fails. 

• Unsupervised learning: make sense of complicated data that we don’t understand or expect.  

• Easier Algorithm Development: Feature Learning instead of Feature Engineering  

• Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS > 
$250M spent software) 

• Quickly perform performance optimization or systematic studies.  

• Faster Algorithms 

• After training, DNN inference is often faster than sophisticated algorithmic approach. 

• DNN can encapsulate expensive computations, e.g. Matrix Element Method.   

• Generative Models enable fast simulations. 

• Already parallelized and optimized for GPUs/HPCs.  

• Neuromorphic processors.
20







Examples of DL in HEP



Feature Learning
• Feature Engineering: e.g. Event Reconstruction ~ Feature Extraction, Pattern Recognition, Fitting, …  

• Deep Neutral Networks can Learn Features from raw data. 

• Example: Convolutional Neural Networks - Inspired by visual cortex 

• Input: Raw data… for example 1D = Audio, 2D = Images, 3D = Video 

• Convolutions ~ learned feature detectors 

• Feature Maps 

• Pooling - dimension reduction / invariance  

• Stack: Deeper layers recognize higher level concepts. 

• Over the past few years, CNNs have lead to exponential improvement / superhuman performance on Image 
classification challenges. Current best > 150 layers.  

• Obvious HEP application: “Imaging” Detectors such as TPCs, High Granularity Calorimeters, or Cherenkov Ring Imaging.



Neutrino Physics

• 40% Better Electron Efficiency for same background.

http://arxiv.org/pdf/1604.01444.pdf

oscillation parameters via the disappearance of ⌫µ and appearance of ⌫e from neutrino oscillation.
NOvA consists of two functionally identical detectors in the NuMI (Neutrinos at the Main Injector)
beam [39] at Fermilab which produces a focused beam with an initial flavor composition largely
dominated by ⌫µ and a small intrinsic ⌫µ, ⌫e, and ⌫e components. Placing the detectors o↵-axis
at 14.6 mrad provides a narrow-band neutrino energy spectrum near 2 GeV. The Near Detector,
located at Fermilab, is placed 1 km from the neutrino source; the Far Detector is located 810 km
away near Ash River, Minnesota. The NOvA detectors are composed of extruded PVC cells filled
with liquid scintillator which segment the detector into cells with a cross section 3.9 cm wide ⇥
6.6 cm deep. The cells are 15.5 m long in the Far Detector. Scintillation light from charged particles
can be captured by a wavelength shifting fiber which runs through each cell. The end of the fiber is
exposed to a single pixel on an avalanche photo-diode array to record the intensity and arrival time
of photon signals. The spatial and absolute response of the detector to deposited light is calibrated
out using physical standard candles, such that a calibrated response can be derived which is a good
estimate of the true deposited energy. Parallel cells are arrayed into planes, which are configured in
alternating horizontal and vertical alignments to provide separate, interleaved X-Z, and Y-Z views.
The 14,000 ton Far Detector, which is used for the training and evaluation of CVN in this paper,
consists of 344,064 total channels arranged into 896 planes each 384 cells wide [6]. Information
from the two views can be merged to allow 3D event reconstruction. A schematic of the detector
design can be seen in Figure 2.

Figure 2. Schematic of the NOvA detector design
The two figures on the right show the views through the top and side of the three-dimensional figure
on the left. They show the ‘hits’ produced as charged particles pass through and deposit energy in
the scintillator-filled cells. Illustration courtesy of Fermilab.

Reconstruction of the neutrino energy and flavor state at the detector is essential to neutrino
oscillation measurements. The neutrino flavor state can be determined in charged-current (CC)
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Figure 7. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
The top-most feature map for each event seems to be particularly sensitive to hadronic activity and
the bottom-most feature map seems to be sensitive to muon tracks. Shown are an example ⌫µ CC
DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction (bottom).
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reject cosmic backgrounds while retaining well-contained neutrino events inside the signal energy
window with high e�ciency. We quote our selection e�ciencies relative to true contained signal,
again matching the approach described in [52] for ⌫e and [53] for ⌫µ tests respectively.

Since the output of the final softmax layer in CVN is normalized to one, it can be loosely
interpreted as a probability of the input event falling in each of the thirteen training categories. For
the results presented in this paper a ⌫e CC classifier was derived from the sum of the four ⌫e CC
component probabilities. Similarly, the four ⌫µ CC components were summed to yield a ⌫µ CC
classification. Figure 9 shows the distribution of the CVN ⌫e CC classification parameter for true
⌫e CC events from ⌫µ ! ⌫e oscillation and the various NuMI beam backgrounds broken down
by type. Figure 10 shows the cumulative e�ciency, purity, and their product when selecting all
events above a particular CVN ⌫e CC classification parameter value. Excellent separation between
signal and background is achieved such that the only significant background remaining is that of
electron neutrinos present in the beam before oscillation; CVN does not attempt to di↵erentiate
between ⌫e CC events from ⌫µ ! ⌫e oscillation and those from ⌫e which are produced promptly
in the neutrino beam; these di↵er only in their energy distributions. Figures 9 and 10 also show
the performance of the CVN ⌫µ CC classification parameter. As with ⌫e, excellent separation is
achieved.

A common way to assess the performance of a signal selection is to compute a Figure of Merit
(FOM) given the number of selected signal events S and background events B. The FOM = S/

p
B

optimizes for a pure sample useful for establishing the presence of the signal S in the presence
of the background, while FOM = S/

p
S + B optimizes for an e�cient sample useful for making

parameter measurements with the signal S . Table 1 shows the e�ciency, purity, and event count
at the maximal point for both optimizations when using CVN to select ⌫e CC events, and Table 2
shows the same for ⌫µ CC events. Using CVN we were able to set selection criteria well optimized
for either FOM when searching for both surviving ⌫µ and appearing ⌫e events.

CVN Selection Value ⌫e sig Tot bkg NC ⌫µ CC Beam ⌫e Signal E�ciency Purity
Contained Events � 88.4 509.0 344.8 132.1 32.1 � 14.8%

s/
p

b opt 0.94 43.4 6.7 2.1 0.4 4.3 49.1% 86.6%
s/
p

s + b opt 0.72 58.8 18.6 10.3 2.1 6.1 66.4% 76.0%

Table 1. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of appearing electron neutrino CC
interactions. E�ciency is shown here relative to the true contained signal. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

CVN Selection Value ⌫µ sig Tot bkg NC Appeared ⌫e Beam ⌫e Signal E�ciency Purity
Contained Events � 355.5 1269.8 1099.7 135.7 34.4 � 21.9%

s/
p

b opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%
s/
p

s + b opt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

Table 2. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of surviving muon neutrino CC in-
teractions. E�ciency here is shown here relative to the pre selected sample. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

Perhaps the most important way to assess the performance of the CVN classification param-
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Table 1. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of appearing electron neutrino CC
interactions. E�ciency is shown here relative to the true contained signal. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

CVN Selection Value ⌫µ sig Tot bkg NC Appeared ⌫e Beam ⌫e Signal E�ciency Purity
Contained Events � 355.5 1269.8 1099.7 135.7 34.4 � 21.9%

s/
p

b opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%
s/
p

s + b opt 0.45 206.8 7.6 6.8 0.7 0.1 58.2% 96.4%

Table 2. A table showing relative selected event numbers for the various components of the NuMI beam,
e�ciency, and purity for two di↵erent optimizations for the selection of surviving muon neutrino CC in-
teractions. E�ciency here is shown here relative to the pre selected sample. The numbers are scaled to an
exposure of 18 ⇥ 1020 protons on target, full 14-kton Far Detector.

Perhaps the most important way to assess the performance of the CVN classification param-
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• Core Physics requires just measuring neutrino flavor and energy. 

• Generally clean (low multiplicity) and high granularity.   

• First HEP CNN application: Nova using Siamese Inception CNN.

http://arxiv.org/pdf/1604.01444.pdf
http://arxiv.org/pdf/1604.01444.pdf


MicroBooNE-Note-1019-PUB

Figure 29: Fraction of cosmic-only events remained vs. neutrino event e�ciency. Each
point on the curve is for some cut value on the neutrino class score.

new methods to quantify this will be explored in future work.
Overall, this work takes the first steps in exploring CNNs and the broader discipline

of Deep Learning to LArTPCs. We have learnt the following lessons:

• It is necessary to consider a strategy to either crop or down-size for a large LArTPC
detector, and study the e↵ect. We have shown one possible method (demonstration
1).

• All else being equal, it is best to limit the down-size, as the networks use the dE/dx
information for classification. A factor of 2 downsizing of the images showed a clear
negative e↵ect (demonstration 1).

• For a particle classification task, using weights for a network trained for a greater
variety of features might perform better. This was seen in µ�/⇡� study where the
network trained for five-particle classification outperformed largely over the same
network trained for only µ�/⇡� sample (demonstration 1).

• The Faster-RCNN architecture can be used for neutrino interaction detection in a
large event image (demonstration 2).

• It is possible to combine di↵erent detector information to enhance the feature in
image data. We have shown one method to combine PMT and TPC information
as illustration (demonstration 3).

• A multi-view architecture can be employed to process multiple TPC plane-views
for neutrino interaction selection, to greatly enhance the performance from using a
single plane information only (demonstration 3).

There are certainly many other avenues, besides the ones listed here, to study and possibly
improve performance. However, the proof-of-principle tests conducted in this work show
that CNNs can deliver results worthy of further exploration and provide a useful starting-
point for those interested in developing their own CNNs for reconstruction of neutrino
events in Liquid Argon TPCs.
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ν vs cosmic: 
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Figure 12: Left: e� selection EP curve for 1:1 e� and � mixture (5200 events total).
Orange and cyan data points are from GoogLeNet and AlexNet respectively, trained
for 5 particle classification. Right: e� score distribution from GoogLeNet trained for 5
particle classification where score is re-normalized for e�/� separation purpose.

study how this separation power changes. However, that is beyond the scope of this
publication.

3.6 Particle Detection Performance

To assess the Faster-RCNN detection performance on the single particle sample, we let
the Faster-RCNN network infer a set of bounding boxes per class for each high resolution
event image containing one particle. Typical detection examples can be seen in figure
13. As it is done for all studies in this section, this study used the same training and
validation sample described in sec. 3.1.

To quantify the Faster-RCNN detection performance on the single particle sample
we infer a set of bounding boxes per class for each high resolution single particle image.
To quantify this performance we compute the intersection over the union of the ground
truth bounding box and the predicted box with the highest network score. This is the
standard performance metric used by object detection networks to compare with one
another. Intersection over union (IoU) is defined for a pair of boxes in the following way:
the intersection area between two boxes is first computed by calculating the overlap area
and then divided by the di↵erence between the total area of the two boxes and their
intersection area. Specifically for two boxes with area A1 and A2,

IoU =
A1 \ A2

A1 + A2 � A1 \ A2
. (4)

This quantity is unity when the predicted box and the ground truth box overlap perfectly.
In other words, the predicted network box is of the same pixel dimensions. In figure 14 we
plot the IoU for the di↵erent five-particle classes. We separate the detected sample into
the five di↵erent particle types and break down each sample by their top classification
score. The true class label is in the title of the plot, and the legend lists 1) the five particle
types that were detected for the sample, 2) the number of detections in the histogram for
that class, and 3) the class-wise fraction of all detections. For this plot we make a cut on
the network score of 0.5. We observe good detection accuracy and ground truth bounding
box overlap on the muon and proton classes. If we consider classification only, muons and
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μ− vs π−: 
εμ= 94% 
 (1-επ)=71.9%
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Figure 11: Left: µ� selection EP curve for 1:1 µ� and ⇡� mixture (6800 events total).
Blue and red data points are AlexNet and GoogLeNet respectively trained with a sample
set that only contain ⇡� and µ� as described in Sec.3.4. Orange and cyan data points
are from GoogLeNet and AlexNet respectively, trained for 5 particle classification. Right:
µ� score distribution from GoogLeNet trained for 5 particle classification where score is
re-normalized for µ�/⇡� separation purpose.

resolution image from the previous study. It is interesting to note that there is a small,
but distinct, set of ⇡� events that follow the µ� distribution. This makes sense since the
⇡� has a similar mass to the µ� and decays into µ�. As a result, some ⇡� can look very
similar to a µ�. A typical way to distinguish ⇡� is to look for a nuclear scattering, which
occurs more often for ⇡� than for a µ�. There can also be “kink” in the track at a point
where the ⇡� decays-in-flight into a µ�, although this is generally quite small. When
neither is observable, the ⇡� looks like a µ�, however when there is a kink or visible
nuclear interaction involved, ⇡� is distinct. This can be seen by a very sharp peak for ⇡�

in the right figure. The same reason explains why there is no µ� above 95% (with the
statistics of this sample) because µ� can never be completely distinguished from those
small fraction of ⇡� that do not carry any kink nor visible nuclear interaction.

3.5 e�/� Separation

We show a similar separation study for e� and � as we did for µ�/⇡�. This time, however,
we only show the result using five-particle classification, since we saw those networks seem
to perform better, presumably for similar reasons. The left plot in figure 12 shows e�

selection e�ciency and purity in a 1:1 mixture of 5200 events taken from the validation
set. The outer-most point achieves selection e�ciency of 94.3% with purity of 71.9%,
although one might want to ask for a better separation with less e�ciency depending on
the goals of an analysis.

e�/� Indistinguishability The right plot in figure 12 shows an electron classification
score distribution for both e� and �. The separation is not as strong compared to ⇡�/µ�:
the two types are essentially indistinguishable in the range of scores from 0.3 to 0.6. We
note that our high-resolution image has a factor of two in wire and six in time compression
applied, and hence this might be the highest separation achievable. It may be interesting
to repeat more studies across di↵erent downsizing levels (including no downsizing) and
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μ− vs π−: 
εμ= 90% 
 (1-επ)=15%

Neutrino: 
εCC= 80% @ εNC= 5% 
ενe= 80% @ ενμ= 15% 

• First Studies Based on out-
of-box CNN 
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Semantic Segmentation

4.3 Performance MicroBooNE-Note-1019-PUB

Figure 22: Example of cosmic background events (both top and bottom) with detected
neutrino bounding boxes with score less than 0.1. One can see many proposals were made.
Both figures show the full region of 6048 time-ticks and 3456 wires on the collection plane.
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Figure 13: Example detections for each of the five particle classes using high resolution
images (576 by 576 pixels). The blue box is the true bounding box. The red box is the
network inferred bounding box. The detection score and inferred class sits atop the red
box on the top left corner. It’s interesting to note the network’s ability to capture a
shower-type particle’s ionization charge within the detection box

protons have the smallest contamination from other particle types. This could be a result
of the strong classification performance of the AlexNet classifier model revealed in figure
9. The electron and � samples had expectedly mutual contamination between the two as
previously revealed by the pure AlexNet classifier. We also find a small contamination of
piminus detection in the electron and � samples at the low IoU range indicating that some
piminus have features shared with electrons and gammas. This is consistent with lower
energy gammas and electrons appearing track like in liquid argon. It is also interesting
to note that both classes’ IoU are similar, meaning the network is able to encapsulate
the charge that spreads outwards as the shower develops. This means the model values
the shower-like nature of electron and � as essential and uses these learned features for
classification. Lastly, the ⇡� particle exhibits the least number of detections above a
threshold of 0.5. We also find the largest contamination from µ�.
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network inferred bounding box. The detection score and inferred class sits atop the red
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shower-type particle’s ionization charge within the detection box

protons have the smallest contamination from other particle types. This could be a result
of the strong classification performance of the AlexNet classifier model revealed in figure
9. The electron and � samples had expectedly mutual contamination between the two as
previously revealed by the pure AlexNet classifier. We also find a small contamination of
piminus detection in the electron and � samples at the low IoU range indicating that some
piminus have features shared with electrons and gammas. This is consistent with lower
energy gammas and electrons appearing track like in liquid argon. It is also interesting
to note that both classes’ IoU are similar, meaning the network is able to encapsulate
the charge that spreads outwards as the shower develops. This means the model values
the shower-like nature of electron and � as essential and uses these learned features for
classification. Lastly, the ⇡� particle exhibits the least number of detections above a
threshold of 0.5. We also find the largest contamination from µ�.
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Figure 23: Top: an example of a true neutrino (yellow box) event where the network
found the highest score bounding box in the wrong location (red box). Bottom: an
example of cosmic-only event where the network found a bounding box (red) with high
neutrino score. There is no neutrino interaction in this event. Both figures show the full
region of 6048 time-ticks and 3456 wires on the collection plane.
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Low score for real Cosmics (data)

4.3 Performance MicroBooNE-Note-1019-PUB

Figure 21: Detected neutrino bounding box within an event image. Top: Muon and
charged pion produced from a ⇡ 1 GeV neutrino. The detection box (in red) appears to
capture a neighboring cosmic ray, but maintains the overall shape of the ground truth
box (in yellow). Bottom: CC event with muon and proton produced. Both figures are
zoomed-in from the original event display, and the length scale of the truth box are shown
in cm.
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NEXT Experiment
• Neutrinoless Double Beta Decay using Gas 

TPC/SiPMs 

• Signal: 2 Electrons. Bkg: 1 Electron. 

• Hard to distinguish due to multiple scattering. 

• 3D readout… candidate for 3D Conv Nets. 

• Just a handful of signal events will lead to 
noble prize 

• Can we trust a DNN at this level?
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Why high pressure gas?

• Topological reconstruction:!

• ßß events in Xe gas at 15 bar are twisted tracks of ~10 cm length with high 
energy deposits at either end. 

• Single electrons from natural radioactivity will only have a high energy 
deposit at one end.
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Figure 1. Monte-Carlo simulation of a 136Xe bb0n event in xenon gas at 10 bar: the ionization track, about
30 cm long, is tortuous because of multiple scattering, and has larger depositions or blobs in both ends.

Figure 2. The Separate, Optimized Functions (SOFT) concept in the NEXT experiment: EL light generated
at the anode is recorded in the photosensor plane right behind it and used for tracking; it is also recorded in
the photosensor plane behind the transparent cathode and used for a precise energy measurement.

3.1 Development of the NEXT project: R&D and prototypes

During the last three years, the NEXT R&D program has focused in the construction, commission-
ing and operation of three prototypes:

• NEXT-DBDM,shown in figure 3. This is an electroluminescent TPC equipped with a compact
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3.1 Development of the NEXT project: R&D and prototypes

During the last three years, the NEXT R&D program has focused in the construction, commission-
ing and operation of three prototypes:

• NEXT-DBDM,shown in figure 3. This is an electroluminescent TPC equipped with a compact
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NEXT Detector Optimization
• Idea 1: use DNNs to optimize detector. 

• Simulate data at different resolutions 

• Use DNN to quickly/easily assess best performance for given resolution.

Examples of simulated events
• Simulated signal (below) and background (above) events: 2x2x2 mm voxels

• Simulated signal (below) and background (above) events: 10x10x5 mm voxels

Examples of simulated events

Table 3. Summary of DNN analysis for different Monte Carlo datasets. The accuracy was com-
puted assuming that the classification of the DNN corresponded to the category (signal or back-
ground) with the higher (> 50%) probability. In each case, approximately 15000 signal and 15000
background events were used in the training procedure, and between 2000-3000 signal and 2000-3000
background events independent of the training set were used to determine the accuracy.

2x2x2 voxels Run description Avg. accuracy (%)
Toy MC, ideal 99.8

Toy MC, realistic 0⌫�� distribution 98.9
Xe box GEANT4, no secondaries, no E-fluctuations 98.3

Xe box GEANT4, no secondaries, no E-fluctuations, no brem. 98.3
Toy MC, realistic 0⌫�� distribution, double multiple scattering 97.8

Xe box GEANT4, no secondaries 94.6
Xe box GEANT4, no E-fluctuations 93.0

Xe box, no brem. 92.4
Xe box, all physics 92.1

NEXT-100 GEANT4 91.6
10x10x5 voxels

NEXT-100 GEANT4 84.5

at the ends of the tracks produced by energetic electrons. The production of secondaries
coupled with energy fluctuations in energy deposition seems to be the principle cause of
accuracy loss in the DNN analysis. Future studies geared toward developing a DNN targeted
on the problem at hand, and attempting to extract information on what characteristics of
the tracks it is “learning,” would lead to a more complete understanding of the possibilities
and limitations of a DNN-based analysis.
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be chosen for determining whether an event is classified as signal or background. It can be
simply chosen as 50%, meaning the category with greatest probability is the classification
of the event, or it can be varied to reject further background at the expense of signal
efficiency. Figure 8 shows the corresponding pairs of signal efficiency and background
rejection produced by variation of this threshold, while for the values reported in table
2 the threshold was chosen such that the signal efficiency matched that reported in the
conventional analysis. Note that to optimize the sensitivity to 0⌫�� decay, one would seek
to maximize the ratio of signal events detected divided by the square root of background
events accepted (see [14]). Thus we define a figure of merit F = n

s

/

p
n

b

, where s and b are
the fractions of signal and background events accepted. This quantity is shown alongside
the plot of signal efficiency vs. background rejection in Fig. 8. In table 2 we reported
the values of background rejection corresponding to the signal efficiencies studied in the
classical analysis, though these did not optimize the figure of merit. For optimal figures
of merit, we would have signal efficiency of 69.0% (62.5%) and background acceptance of
2.5% (5.8%) for 2x2x2 mm3 (10x10x5 mm3) voxels.

Figure 8. Signal efficiency vs. background rejection for DNN analysis of voxelized (2x2x2 and
10x10x5 cubic mm), single-track NEXT-100 Monte Carlo events. The figure of merit F to be
maximized in an optimal 0⌫�� search is also shown as a function of background rejection.

6.2 Evaluating the DNN analysis

We now ask what is causing some significant fraction of the events to be misclassified in
the analysis described in section 6.1. To address this, a similar analysis was run on several
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6 Event classification with a DNN

Here we investigate the performance of a DNN in classifying events into two categories,
“signal” and “background,” and compare the results to the conventional analysis described in
section 4.2. We chose to use the GoogLeNet DNN for this initial study, as its implementation
was readily available in the Caffe [12] deep learning framework along with an interface,
DIGITS [4], which allows for fast creation of image datasets and facilitates their input to
several DNN models. In order to generate large numbers of events with which to train
the DNN, an alternate GEANT-based Monte Carlo, which we call the “xenon box” (Xe
box) Monte Carlo, was run in which the NEXT-100 detector geometry was not present,
and background events (single electrons) and signal events (two electrons emitted from a
common vertex with a realistic 0⌫�� energy distribution) were generated in a large box
of pure xenon gas at 15 bar. These events were then subject to the same voxelization
procedure and single-track cut as described in section 2.1.

For two different configurations of voxel size, GoogLeNet was trained on 202400 Xe box
input events using one or more NVidia GeForce GPUs. Each event was input to the net as
a .png image consisting of three color (RGB) channels, one for each of three projections of
the 3D voxelized track, (R, G, B) ! (xy, yz, xz). This information for a signal event and
a background event was shown earlier for different voxelizations in Fig. 4 and Fig. 5.

6.1 Analysis of NEXT-100 Monte Carlo

To compare the ability of the DNN to classify events directly with the performance of the
topological analysis of section 4.2, we consider NEXT-100 Monte Carlo events that have
passed the pre-selection cuts described in 4.1, with chosen voxel sizes of both 2 x 2 x 2 mm3

and 10 x 10 x 5 mm3. For each chosen voxel size, Monte Carlo events that were subject to
the standard “blob cuts” of the classical analysis were classified by the corresponding DNN
trained using Xe box events. Note that the background events used in this comparison
were those produced by the 214 Bi decay. The results are shown in table 2. The DNN
analysis performs better than the conventional analysis, but there is still potential room for
improvement.

Table 2. Comparison of conventional and DNN-based analyses. The comparison shows, for a given
percentage of signal events correctly classified, the number of background (214Bi) events accepted
(mistakenly classified as signal).

Analysis Signal eff. (%) B.G. accepted (%)
DNN analysis (2 x 2 x 2 voxels) 86.2 4.7

Conventional analysis (2 x 2 x 2 voxels) 86.2 7.6
DNN analysis (10 x 10 x 5 voxels) 76.6 9.4

Conventional analysis (10 x 10 x 5 voxels) 76.6 11.0

Because the output layer of the DNN gives a probability that a given event is signal
and a probability that it is background, and these probabilities add to 1, a threshold may
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• Idea 2: systematically study the relative importance of various physics/detector effects. 

• Start with simplified simulation. Use DNN to assess performance. 

• Turn on effects one-by-one.



Semi-supervised Learning
• Basic idea: Train network to reproduce the input.  

• Example: Auto-encoders 

• De-noising auto-encoders: add noise to input only. 

• Sparse auto-encoders:  

• Sparse latent (code) representation can be exploited for 
Compression, Clustering, Similarity testing, …  

• Anomaly Detection

• Reconstruction Error 

• Outliers in latent space 

• Transfer Learning

• Small labeled training sample?  

• Train auto-encoder on large unlabeled dataset (e.g. data). 

• Train in latent space on small labeled data. (e.g. rare 
signal MC). 

• Easily think of a dozen applications.



Learning Representations
• Example: Daya Bay Experiment (Evan Racah, et al) 

• Input: 8 x 24 PMT unrolled cylinder. Real Data (no simulation)  

• 2 Studies: 

• Supervised CNN Classifier

• Labels from standard analysis:  Prompt/Delayed Inverse Beta Decay, 
Muon, Flasher, Other. 

• Convolutional Auto-encoder (semi-supervised) 

• Clearly separates muon and IBD delay without any physics knowledge. 

• Potentially could have ID’ed problematic data (e.g. flashers) much earlier.

7

(a) Example of an “IBD delay” event (b) Example of an “IBD prompt” event

Fig. 5: Raw event image (top row) and convolutional autoencoder reconstructed event image (bottom row).
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(a) An IBD delay event in cluster A (b) An IBD prompt event in cluster A

(c) An IBD delay event in cluster C (d) An IBD prompt event in the blue cluster below the letter B

Fig. 3: Representative examples of various IBD events in Figure 2. Clusters in Figure 2 where each event appears called out
by letter

Fig. 2: t-SNE reduction of representation learned on the last
fully connected layer of CNN

supervised convolutional neural network. Figure 2 shows the t-
SNE visualization of the outputs from the last fully connected
layer of the CNN. This visualization shows in two dimensions
how the each example is clustered in the 26-dimensional
feature space learned by the network.

We also show, in Figures 3a and 3b, example PMT charges
of different types of events that are in clusters in the t-SNE
clustering (Figure 2) that contain a mix of labels near each
other, as well as examples contained in well separated clusters
in Figures 3c and 3d.

2) Interpretation: Our results suggest that there are patterns
in the Daya Bay data that can be uncovered by machine
learning techniques without knowledge of underlying physics.
Specifically, we were able to achieve high accuracy on classi-
fication of the Daya Bay events using only the spatial pattern
of the charge deposits. In contrast, the physicists used the
time of the events and prior physics knowledge to perform
classification. In addition, our results suggest that deep neural
networks were better than other techniques at classifying
the images and thus finding patterns in the data. As shown
in Table II, our CNN architecture had the highest F1-score
and accuracy for all event types. In particular, it showed
significantly higher performance on classes “IBD prompt” and
“flasher”. Not only did the supervised CNN perform better in
classifying the data then other shallower ML techniques, such
as KNN and SVM’s, but it also discovered features in the data
that helped cluster it into fairly distinct groups as shown in
Figure 2.

We can further investigate the raw images within the clusters
formed by t-SNE. For example, in Figures 3a and 3b the
CNN has identified a particularly distinctive charge pattern
common to both images. These are labelled as different
types because prompt events have a large range of charge
patterns, some of which very closely resemble delay events.
The standard physics analysis is able to resolve these only
by using the time coincidence of delay events happening
within 200 microseconds after prompt events, while the neural
network solely has charge pattern information. Figures 3c and
3d, on the other hand, show images from more distinct prompt
and delay clusters, respectively, illustrating that prompt events
deposit less energy in the detector on average.

t-SNE reduction of 26-dim 
representation of the last fully connected 
layer.

6

Such clustering suggests that, with help from ground truth
labelling, deep learning techniques can discover informative
features and thus find structure in raw physics inputs. Because
such patterns in the data exist and can be learned, this suggests
that unsupervised learning also has the potential to discover
these patterns without needing ground truth labeling, so we
turn to that analysis in the next section.

B. Unsupervised learning with Convolutional Autoencoder

1) Results: For the convolutional autoencoder, we present
the t-SNE visualization of the 10 features learned by the
network in figure 4. To show how informative the feature
vector that the network learned is, we also show several
event images and their reconstruction by the autoencoder in
Figures 5a and 5b. More informative features that are learned
correspond to more accurate reconstructions because the 10
features effectively give the network the “ingredients” it needs
to the reconstruct the input 8x24 structure.

2) Interpretation: The convolutional autoencoder is de-
signed to reconstruct PMT images and so it learns different
features than the supervised CNN which is attempting to
classify based on the training labels. Therefore, the t-SNE
clustering for this part of the study (in Figure 4) is quite
distinct to that in the supervised section. Nevertheless we
were able to obtain well defined clusters without using any
physics knowledge or training. Specifically there is a very
clearly separated cluster that can be identified with the labelled
muons, and also a fairly clear separation between “IBD delay”
and other events. We even achieve some separation between
“IBD prompt” and “other” backgrounds which, as mentioned
above, is mainly achieved in the default physics analysis only
by incorporating additional information of the time between
prompt and delayed events.

By looking at the reconstructed images, we can see the au-
toencoder was able to filter out the input noise and reconstruct
the important shape of different event types. For example, in
Figure 5a, the shape of the charge pattern is reconstructed
extremely accurately, which shows that the 10 learned features
from the autoencoder are very informative for “IBD delay”
events. In Figure 5b, salient and distinct aspects of the more
challenging “IBD prompt” events are also reconstructed fairly
well.

As further work, it would be desirable to obtain better
separation between “flasher” and “other” events. Therefore
we intend to continue to tailor the convolutional autoencoder
approach to this application by considering input transforma-
tions that take into account the experiment geometry, variable
resolution images, and alternative construction of convolu-
tional filters, as well as more input data and full parameter
optimization of the number of filters and the size of the feature
vector.

VIII. CONCLUSIONS

In this work we have applied for the first time unsupervised
deep neural nets within particle physics and have shown
that the network can successfully identify patterns of physics
interest. As future work we are collaborating with physicists

Fig. 4: t-SNE representation of features learned by convolu-
tional autoencoder

on the experiment to investigate in detail the various clusters
formed by the representation to determine what interesting
physics is captured in them beyond the initial labelling. We
also plan to incorporate such visualizations into the monitoring
pipeline of the experiment and as part of other work [26] have
applied the autoencoder at scale to a large part of the entire
Daya Bay dataset (2.7 billion events).

Such unsupervised techniques could be utilized in a generic
manner for a wide variety of particle physics experiments
and run directly on the raw data pipeline to aid in trigger
(filter) decisions or in evaluating data quality, or to dis-
cover new instrument anomalies (such as flasher events). The
use of unsupervised learning to identify such features is of
considerable interest within the field as it can potentially
save considerable time required to hand-engineer features to
identify such anomalies.

We have also demonstrated the superiority of convolutional
neural networks compared to other supervised machine learn-
ing approaches for running directly on raw particle physics
instrument data. This offers the potential for use as fast selec-
tion filters, particularly for other particle physics experiments
that have many more channels and approach exabytes of
raw data such as those at the current Large Hadron Collider
(LHC) and planned HL-LHC at CERN [27]. Our analysis
in this paper used the labels determined from an existing
physics analysis and therefore the selection accuracy is upper
bounded by that of the physics analysis. Many other particle
physics experiments, however, have reliable simulated data
which could be used with the approaches in this paper to
better the selection accuracy achieved with those experiments’
current analyses.

In conclusion, we have demonstrated how deep learning can
be applied to reveal physics directly from raw instrument data
even with unsupervised approaches, and therefore that these
techniques offer considerable potential to aid the fundamental
discoveries of future particle physics experiments.

t-SNE reduction of 10 parameter latent 
representation.

http://arxiv.org/pdf/1601.07621v1.pdf


Generative Models
• Likelihood Approximation relies simulation

• Most computationally expensive step, so any speedup has huge impact. 

• More generally, simulation based on data would be a powerful tool. 

• For example, we can build a Hadronization model purely from data. 

• DNNs Generative Models enable building simulations purely from examples. 

• Generative Adversarial Nets (Goodfellow, et. al. arxiv:1406.2661). 
Simultaneously train 2 Networks:  

• Discriminator (D) that tries to distinguish output and real examples. 

• Generator (G) that generate the output that is difficult to distinguish. 

• Variational Auto-encoders:  

• Learn a latent variable probabilistic model of the input dataset.  

• Sample latent space and use decoder to generate data. 

• Particle showering is slowest part of the micro-physics simulation…  

• Various techniques for fast showering (e.g. shower template libraries) are 
common. 

• DNN Generative Models are being pursued inside the experiments (K. 
Cranmer, G. Louppe, …) for this task…

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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Figure 17: Comparison between the 500 most real and most fake looking images, generated by Pythia,
on the left, and by the GAN, on the right.

consecutive locally-connected layers, the last of which yields the final generated images. By peeking
through the layers of the generator and following the path of a jet image in the making, we can visually
explore the steps that lead to the production of jet images with their desired physical characteristics.

We probe the network after each locally-connected hidden layer; we investigate how the average
signal and average background images develop into physically distinct classes as a function of depth
of the generator network, by plotting each channel separately (Fig. 18). The output from the first
locally-connected layer consists of six 14 ⇥ 14 images (i.e., an 14 ⇥ 14 ⇥ 6 volume), and the second
consists of six 26 ⇥ 26 images. The red pixels are more strongly activated for signal images, while
blue pixels activate more strongly in the presence of background images, which proves the fact that
the generator is learning, from its very early stages that spread out energy depositions are needed to
produce more typical background images.

– 16 –



Plans…



Public Datasets
• Biggest obstacles to DNN research is Data accessibility. 

• Detector level studies require CPU intensive simulations.  

• DNNs require large training sets with full level of detail (i.e. not 4-vectors). 

• Experiments have such samples, but they are not easily accessible and not public. 

• Difficult to collaborate with DL community or other experiments. 

• Public datasets (Unveiling next week at DS@HEP Workshop at Fermilab): 

• We provide data, tools (e.g. fast data read), fully setup problems. Goal is build working groups around each dataset. 

• LArTPC (Sepideh Shahsavarani, AF): LArIAT detector. 1 M of every particle species (including neutrinos). 

• Challenges: Particle/Neutrino Classification and Energy Reco, Noise Suppression, 2D->3D.  

• Calorimetry (Maurizio Pierini, Jean-Roch Vlimant, Nikita Smirnov, AF): LCD Calorimeter.  

• Challenges: PID/Energy Reco. Simulation.  

• Tracking 

• Simple 2D tracking data shown at Connecting the Dots will be used for DS@HEP. 

• TrackingML/ACTS (David Rousseau, Andreas Salzberger, … ) HL-LHC like detector/environment. 

• CMS Jets: Full Reco Simulated Jets for boosted object and jet ID



LArTPC 2D to 3D
• LArTPC wire readout necessary due to heat load. 

• Full Pixelized readout would give ~ N2 datapoint/time 
slice 

• Wire readout give ~2N datapoint/time 

• Information loss is “recovered” in reconstruction by 
assuming particle interaction topologies (track, shower, …) 

• Tomographic approach (Wirecell) “resolves” ambiguities 
through costly Markov Chain MC 

• Perhaps a DNN can learn the topologies and infer a 3D 
image 

• Imagine an Auto-encoder like setup with 

•  Input: 2x (or 3x) 2D images 

• Output: 3D image.

!  2D Vs. 3D images 
•  As electrons drift toward APA, they represent 

tomographic cross sections at each time slice  

•  Combining the images on the time slices results in the 
full 3D object  
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Science Fiction?
• Imagine in next 10 years DNN lives up to the hype… 

• We’ve proven DNNs gets us better, faster, easier 
software… and hardware. 

• Industry investment in DNNs has yielded 
significant gain over Moore’s Law 

• Custom DL/neuromorphic chips and HPCs 

• Software Frameworks 

• Cloud Services 

• Consultants: 

• Data Scientists: DL reduces need for 
domain-specific expertise (e.g. in 
biology now).  

• Data Engineers: low level optimization, 
deployment, operation…    

• Actually, all of these already exist! 

• Large portions of HEP code replaced by deep 
neutral network architecture and weights.  

• HEP Software Frameworks built on top of 
DL Frameworks.  

• To DL systems, our computing looks like 
everyone else’s… e.g. other sciences. 

• Optimization, deployment, operations handled 
by professional Data Engineers.   

• Trigger implemented in custom inference 
systems built from commodity hardware. 

• Computation performed on DL Clouds and 
scientific HPCs. 

• DNNs designed and trained in collaboration 
with professional Data Scientists.  

• HEP PhDs trained/funded by industry to apply 
DL to HEP and then transition to industry.



Final Thoughts
• For decades HEP had the biggest datasets… was overtaken by industry mid-2000’s… may be the biggest 

datasets again in the next decade. 

• Computing for HL-LHC will be prohibitively expensive unless we find some clever techniques. 

• Deep Learning and Neuromorphic processors are a promising solution.  

• Deep Learning can change how science is done. 

• Improve performance. Save time and money. 

• Mitigate stalling of Moore’s law. 

• Use most recent hardware. 

• Allow scientists to focus on concepts rather than implementation.Deep Learning serves as a tool to 
optimize designs and traditional techniques, indirectly improving our measurements.  

• If we want to be ready for the DL revolution in 10 years, we need to do R&D now. 

• We can’t forget that DL can complicated things: 

• Systematics. Data/MC agreement. 

• Generate large independent training and calibration samples. 

• New complicated “release”, production, and analysis cycles/work-flows.



Extra Slides



How do we 
“see” particles?
• Charged particles ionize media 

• Image the ions. 

• In Magnetic Field the curvature of 
trajectory measures momentum. 

• Momentum resolution degrades as 
less curvature: σ(p) ~ c p ⊕ d.  

• d due to multiple scattering.   

• Measure Energy Loss (~ # ions) 

• dE/dx = Energy Loss / Unit Length = 
f(m, v) = Bethe-Block Function 

• Identify the particle type 

• Stochastic process (Laudau) 

• Loose all energy → range out.  

• Range characteristic of particle type.

28 2 Interactions of Particles in Matter

Fig. 2.3 Energy loss in air
vs. the kinetic energy for
some charged particles.
Figure calculated using
Eq. (2.3)

For the purpose of a qualitative discussion the Bethe–Bloch equation can be
approximated as

dE
dx

≈ ρ (2 MeVcm2/g)
Z2

β2 (2.4)

If the density is expressed in g/cm3, the energy loss is in units MeV/cm. In the
literature, the term ‘energy loss’ sometimes refers to the loss divided by the density.
In the latter case, the energy loss has the units MeV cm2/g. For electrons with energy
of more than 100 keV, the velocity is close to the velocity of light (β≈1), and the
energy loss is about 2 MeV/cm multiplied by the density of the medium.

For all particles, the energy loss decreases with increasing energy and eventually
reaches a constant, energy-independent value. That value is approximately the same
for all particles of unit charge (see Fig. 2.3).

For alpha particles the velocity is usually much less than the velocity of light, and
the energy loss is much larger. However, the Bethe–Bloch equation is valid only if
the velocity of the particle is much larger than the velocity of the electrons in the
atoms, and for alpha particles, this condition is usually not satisfied. The velocity of
electrons in atomic orbits is of the order of 1% of the velocity of light. For particle
velocities that are small compared to the typical electron velocities in the atoms,
the energy loss increases with the energy and reaches a maximum when the particle
velocity is equal to the typical electron velocity. After this maximum, the energy
loss decreases according to the Bethe–Bloch equation. This behaviour is illustrated
in Figs. 2.4 and 2.13.

Since particles lose energy when travelling in a medium, they will eventually
have lost all their kinetic energy and come to rest. The distance travelled by the



How do we “see” particles?
• Particles deposit their energy in a stochastic process know as 

“showering”, secondary particles, that in turn also shower. 

• Number of secondary particles ~ Energy of initial particle.  

• Energy resolution improves with energy: σ(E) / E = a/√E ⊕ b/E ⊕ c.  

• a = sampling, b = noise, c = leakage.   

• Density and Shape of shower characteristic of type of particle. 

• Electromagnetic calorimeter: Low Z medium  

• Light particles: electrons, photons, π
0
 →γγ interact with electrons 

in medium 

• Hadronic calorimeters: High Z medium 

• Heavy particles: Hadrons (particles with quarks, e.g. charged 
pions/protons, neutrons, or jets of such particles) 

• Punch through low Z.  

• Produce secondaries through strong interactions with the 
nucleus in medium. 

• Unlike EM interactions, not all energy is observed. 
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Large LArTPC Dataset
• Training samples have been at best ~100k 

examples…. usually much less. 

• My students (S. Shahsavarani and G. 
Hilliard) simulated a huge sample of 
LArTPC events (LArIAT Detector). 

• Necessitated by Energy Regression 
studies. 

• 1 M of every particle species: e±, p±, 
K±, π±, π0, μ±, γ, νe, νμ, ντ 

• Flat Energy distribution. 

• Will soon make these publicly available. 

• Collaborators at UCI (P. Sadowski, et al) 
were able to get better performance by 
training for a week on this large dataset.



LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of 

electrons and positrons to TeV energies (~ LHC for protons) 

• Not a real experiment yet, so we (Maurizio Pierini, Jean-Roch 
Vlimant, Nikita Smirnov, AF) can simulate data and make it 
public.  

• The LCD calorimeter is an array of absorber material and silicon 
sensors  comprising the most granular calorimeter design 
available  

• Data is essentially a 3D image 

• First studies, π
0
 vs γ classification with various DNNs. 

• Much more to come…

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 

4

A long way to an optimal network architecture

19

• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

The dataset: what we have so far

7

• π0 and γ guns (1M events each) 

• one particle shoot at the time against the 
calorimeter surface 

• always perpendicular to calorimeter surface 

• Energy varied between 10 GeV and 110 GeV in 
steps of 1 GeV 

• Data format: 

• energy values in a 20x20x30 cell array (ix, iy, iz)  

• energy of particle (true value for regression) 

• particle ID (label for classification: 1 for γ, 0 for 
π0)

YX

Z

YX

Z

π0

γ γ

γ
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HL-LHC Tracking
• Tracking steps: hit prep, seeding, pattern recognition, track fitting, track cleaning 

• Highly optimized already for offline reconstruction for Run 2 

•  ~30-50 proton collisions per beam crossing  

• 1 kHz data stream, processed offline.  

• HL-LHC: ~ 200 proton collisions per beam crossing 

• combinatorics cause pattern recognition time to grow exponentially 

• Busy environment requires tracking at 40 MHz for trigger 

• Need Pattern Recognition that scales better with number of hits. Deep Learning?  

• Again an obstacle to applying deep learning techniques is accessibility to the data. 

• Tracking ML (David Rousseau, Andreas Salzberger, …, AF): Hoping to have ML community develop solutions, mirroring the 
HiggsML Challenge.   

• ACTS: Standalone version of ATLAS Tracking Simulation/Reconstruction developed for this challenge.

07/05/16 DS@HEP2016, Simons Foundation, vlimant@cern.ch 25

Cost of Tracking

● Charged particle track reconstruction is one of the most CPU consuming
task in  event reconstruction

● Optimizations (to fit in computational budgets)  mostly saturated

● Large fraction of CPU required in the HLT. Cannot perform tracking
inclusively at CMS and ATLAS. Online tracking strategy for LHCb.

Tracking

• High luminosity means high pileup

• Combinatorics of charged particle tracking become

extremely challenging for GPDs

• Generally sub-linear scaling for track reconstruction

time with m

• Impressive improvements for Run 2, but we need to go

much further 

23
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Pattern Recognition
● Use of the Kalman filter

formalism with weight matrix

● Identify possible next layers
from geometrical considerations

● Combinatorics with compatibles
hits, retain N best candidates

● No smoothing procedure

● Resilient to missing modules

● Hits are mostly belonging to one
track and one track only

● Hit sharing can happen in dense
events, in the innermost part

● Lots of hits from low momentum
particles



• Charged Particles traveling faster than speed of light in medium 
emit Cherenkov light (analogous to sonic boom).  

• Light emitted in cone, with angle function of speed and mass. 

• Depending on context, allow for particle identification and/or 
speed measurement.

How do we “see” particles?
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Data Analysis
• Objectives: 

• Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma) 

• Measurements: Maximum Likelihood Estimate 

• Limits (confidence intervals): Also based on Likelihood 

• Likelihood

• n Independent Events (e) with Identically Distributed Observables ({x}) 

• Significant part of Data Analysis is approximating the likelihood as best as we 
can.

I N D E P E N D E N T  E V E N T S

•Make point that in HEP we consider our collisions during a given 
data taking period to be i.i.d. 

• so the likelihood is multiplicative across events, need to model 
distribution p(x|θ) for individual event 

• we often also have prediction for the expected number of events 
ν, which in general also depends on θ 

• we call this an extended likelihood, statisticians often call it a 
marked Poisson process  

• I will mainly ignore the Poisson part for this talk, but it can easily 
be added

6
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Standard Model / New Physics 
in Quantum Field Theory

Lepton/
Quark 4-vectors

Soft QCD: Quark Fragmentation 
and Hadronization

Particle 
4-vectors

Simulation: Particle 
Interactions with Detector 

Energy 
Deposits in Detector

Digitization: Detector 
Response and Pileup Mixing

Detector Response

Approximating the Likelihood
• Physics is all about establishing a very precise “model” of the underlying 

phenomena… so we can model our data very well. 

• Enables multi-step ab-initio simulations:  

1. Generation: Standard Model and New Physics are expressed in 
language of Quantum Field Theory. 

➡ Feynman Diagrams simplify perturbative prediction of HEP 
interactions among the most fundamental particles (leptons, quarks) 

2. Hadronization: Quarks turn to jets of particles via Quantum 
Chromodynamics (QCD) at energies where theory is too strong to 
compute perturbatively.  

➡ Use semi-empirical models tuned to Data. 

3. Simulation: Particles interact with the Detector via stochastic 
processes  

➡ Use detailed Monte Carlo integration over the “micro-physics” 

4. Digitization: Ultimately the energy deposits lead to electronic signals in 
the O(100 Million) channels of the detector. 

➡ Model using test beam data and calibrations. 

• Output is fed through same reconstruction as real data. 



Likelihood Approximations
• Need P({xe}|θ) of an observed event (e). The better we do, the more sensitive our measurements. 

• Steps 2 (Hadronization) and 3 (Simulation) can only be done in the forward mode… 

➡ cannot evaluate the likelihood.

• So we simulate a lot of events and use a Probability Density Estimator (PDE), e.g. a histogram.  

• {xe} = {100M Detector Channels} or even { particle 4-vectors } are too high dimension.  

• Instead we derive {xe} =  { small set of physics motivated observables } → Lose information. 

• Isolate signal dominating regions of {xe} → Lose Efficiency.  

• Sometimes use classifiers to further reduce dimensionality and improve significance 

• Profile the likelihood in 1 or 2 (ideally uncorrelated) observables. 

• Alternative, try to brute force calculate via Matrix Element Method: 

• But it’s technically difficult, computationally expensive, mistreats hadronization, and avoids 
simulation by highly simplifying the detector response. 

Mattelaer Olivier Data Science @LHC 2015 4
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transfer function 
 
 
 
 

integration

MadGraph5 

MadGraph5 

fitted from MC 
 
 
 

MadWeight

Computed via



Searching for Exotic Particles in High-Energy Physics with Deep Learning
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Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle dis-
coveries. Finding these rare particles requires solving di�cult signal-versus-background classification
problems, hence machine learning approaches are often used. Standard approaches have relied on
‘shallow’ machine learning models that have a limited capacity to learn complex non-linear functions
of the inputs, and rely on a pain-staking search through manually constructed non-linear features.
Progress on this problem has slowed, as a variety of techniques have shown equivalent performance.
Recent advances in the field of deep learning make it possible to learn more complex functions and
better discriminate between signal and background classes. Using benchmark datasets, we show
that deep learning methods need no manually constructed inputs and yet improve the classification
metric by as much as 8% over the best current approaches. This demonstrates that deep learning
approaches can improve the power of collider searches for exotic particles.

INTRODUCTION

The field of high energy physics is devoted to the study
of the elementary constituents of matter. By investigat-
ing the structure of matter and the laws that govern its
interactions, this field strives to discover the fundamental
properties of the physical universe. The primary tools
of experimental high energy physicists are modern ac-
celerators, which collide protons and/or antiprotons to
create exotic particles that occur only at extremely high
energy densities. Observing these particles and measur-
ing their properties may yield critical insights about the
very nature of matter [1]. Such discoveries require power-
ful statistical methods, and machine learning tools play
a critical role. Given the limited quantity and expen-
sive nature of the data, improvements in analytical tools
directly boost particle discovery potential.

To discover a new particle, physicists must isolate a
subspace of their high-dimensional data in which the hy-
pothesis of a new particle or force gives a significantly
di↵erent prediction than the null hypothesis, allowing for
an e↵ective statistical test. For this reason, the critical
element of the search for new particles and forces in high-
energy physics is the computation of the relative likeli-

hood, the ratio of the sample likelihood functions in the
two considered hypotheses, shown by Neyman and Pear-
son [2] to be the optimal discriminating quantity. Of-
ten this relative likelihood function cannot be expressed
analytically, so simulated collision data generated with
Monte Carlo methods are used as a basis for approxima-
tion of the likelihood function. The high dimensionality
of data, referred to as the feature space, makes it in-
tractable to generate enough simulated collisions to de-
scribe the relative likelihood in the full feature space, and
machine learning tools are used for dimensionality reduc-
tion. Machine learning classifiers such as neural networks
provide a powerful way to solve this learning problem.

The relative likelihood function is a complicated func-
tion in a high-dimensional space. While any function

can theoretically be represented by a ‘shallow’ classifier,
such as a neural network with a single hidden layer [3],
an intractable number of hidden units may be required.
Circuit complexity theory tells us that deep neural net-
works (DN) have the potential to compute complex func-
tions much more e�ciently (fewer hidden units), but in
practice they are notoriously di�cult to train due to the
vanishing gradient problem [4, 5]; the adjustments to the
weights in the early layers of a deep network rapidly ap-
proach zero during training. A common approach is to
combine shallow classifiers with high-level features that
are derived manually from the raw features. These are
generally non-linear functions of the input features that
capture physical insights about the data. While helpful,
this approach is labor-intensive and not necessarily op-
timal; a robust machine learning method would obviate
the need for this additional step and capture all of the
available classification power directly from the raw data.

Recent successes in deep learning – e.g. neural net-
works with multiple hidden layers – have come from al-
leviating the gradient di↵usion problem by a combina-
tion of factors, including: 1) speeding up the stochas-
tic gradient descent algorithm with graphics processors;
2) using much larger training sets; 3) using new learn-
ing algorithms, including randomized algorithms such as
dropout [6, 7]; and 4) pre-training the initial layers of
the network with unsupervised learning methods such
as autoencoders [8, 9]. With these methods, it is be-
coming common to train deep networks of five or more
layers. These advances in deep learning could have a sig-
nificant impact on applications in high-energy physics.
Construction and operation of the particle accelerators
is extremely expensive, so any additional classification
power extracted from the collision data is very valuable.

In this paper, we show that the current techniques
used in high-energy physics fail to capture all of the
available information, even when boosted by manually-
constructed physics-inspired features. This e↵ectively re-
duces the power of the collider to discover new particles.
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TABLE I: Performance for Higgs benchmark. Com-
parison of the performance of several learning techniques:
boosted decision trees (BDT), shallow neural networks (NN),
and deep neural networks (DN) for three sets of input fea-
tures: low-level features, high-level features and the complete
set of features. Each neural network was trained five times
with di↵erent random initializations. The table displays the
mean Area Under the Curve (AUC) of the signal-rejection
curve in Figure 7, with standard deviations in parentheses as
well as the expected significance of a discovery (in units of
Gaussian �) for 100 signal events and 1000 ± 50 background
events.

AUC

Technique Low-level High-level Complete

BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)

NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)

DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

Discovery significance

Technique Low-level High-level Complete

NN 2.5� 3.1� 3.7�

DN 4.9� 3.6� 5.0�

better understood than others, so that some simulated
background collisions have larger associated systematic
uncertainties than other collisions. This can transform
the problem into one of reinforcement learning, where
per-collision truth labels no longer indicate the ideal net-
work output target. This is beyond the scope of this
study, but see Refs. [22, 23] for stochastic optimizaton
strategies for such problems.

Figure 7 and Table I show the signal e�ciency and
background rejection for varying thresholds on the out-
put of the neural network (NN) or boosted decision tree
(BDT).

A shallow NN or BDT trained using only the low-level
features performs significantly worse than one trained
with only the high-level features. This implies that the
shallow NN and BDT are not succeeding in indepen-
dently discovering the discriminating power of the high-
level features. This is a well-known problem with shallow
learning methods, and motivates the calculation of high-
level features.

Methods trained with only the high-level features,
however, have a weaker performance than those trained
with the full suite of features, which suggests that despite
the insight represented by the high-level features, they do
not capture all of the information contained in the low-
level features. The deep learning techniques show nearly
equivalent performance using the low-level features and
the complete features, suggesting that they are automat-

ically discovering the insight contained in the high-level

features. Finally, the deep learning technique finds addi-
tional separation power beyond what is contained in the
high-level features, demonstrated by the superior perfor-
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FIG. 7: Performance for Higgs benchmark. For the
Higgs benchmark, comparison of background rejection versus
signal e�ciency for the traditional learning method (a) and
the deep learning method (b) using the low-level features, the
high-level features and the complete set of features.

mance of the deep network with low-level features to the
traditional network using high-level features. These re-
sults demonstrate the advantage to using deep learning
techniques for this type of problem.

The internal representation of a NN is notoriously dif-
ficult to reverse engineer. To gain some insight into the
mechanism by which the deep network (DN) is improving
upon the discrimination in the high-level physics features,
we compare the distribution of simulated events selected
by a minimum threshold on the NN or DN output, cho-
sen to give equivalent rejection of 90% of the background
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Boosted Object Tagging
• Decay products of Highly Energetic heavy particles (i.e. top, 

W, Z, H) are collimated into large jets that cannot be resolved. 

• Boosted object tagging using Deep Learning is being pursed by 
multiple groups in the LHC experiments… mostly the data is 
private, so I can’t show. 

• Early study by SLAC group (M. Kagan, A. Schwartzman, et al) 

• Jet Images: Construct images of the energy deposits of jets 
(paper) 

• Use classifiers, such as CNNs…  

• By studying the features of the CNN, SLAC group got new 
insight into color-flow which can be used in traditional 
techniques.  

48- -
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Learning about learning

“Learned” t21 !

little mass 
info in the 

middle

More complicated events: jets

• Jets are cone-like showers of 
quarks and gluons that produce 
tens of particles, all close to each 
other 

• With large energies (e.g., LHC), 
jets can also come from H, W, top 
particles (decaying to jets, which 
overlap)
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Jet-related ML problems
• Classification problem: 

• for each jet, return the 
probability of being a quark, 
gluon, W/Z, H, or top 

• Regression problem: 

• measure the jet energy, its 
direction, or its mass 
(interesting for “merged” jets 
from W/Z/H/top and for possible 
new physics particles)

23
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Figure 2: Distribution of pruned jet mass in simulation of signal and background processes.
All simulated distributions are normalized to 1. The W/Z/H and top-quark jets are required
to match respective generator level particles in the event. The W/Z/H jets are from 1.5 TeV
W0 ! WH and Z0 ! ZH signal samples.

ing the full set of jet constituents (before pruning) with the kT algorithm [44] and halting the
reclustering when N distinguishable protojets are formed. The directions of the N jets are used
as the reference axes to compute the N-subjettiness [45–47] tN of the original jet, defined as

tN =
1
d0

Â
k

pT,k min(DR1,k, DR2,k, . . . , DRN,k), (1)

where pT,k is the pT of the kth constituent of the original jet and DRn,k is its angular distance
from the axis of the nth subjet (with n = 1, 2, . . . , N). The normalization factor d0 for tN is
d0 = Âk pT,kR0, with R0 set to the distance parameter R = 0.8 of the original CA8 jet. To
improve the discriminating power, we perform a one-pass optimization of the directions of the
subjets’ axes by minimizing tN [21, 46]. By using the smallest DRn,k to weight the value of pT,k
in Eq. (1), tN yields small values when the jet originates from the hadronization of N or fewer
quarks. The tij = ti/tj ratios t21, t31, t32, t41, t42, and t43 have been studied to identify the best
discriminators for jets from H ! WW⇤ ! 4q and W/Z ! qq0 decays. We find that the ratio
t42 works best to discriminate the four-pronged H ! WW⇤ ! 4q events against QCD jets, and
t21 to identify W/Z ! qq0 [48].

The discriminating power of t42 can be seen in Fig. 3. The t42 distribution of HWW jets tends
to peak around 0.55. By contrast, t42 distributions of multijet background and W/Z jets have a
larger fraction of events at large values of t42, especially after requiring a pruned jet mass in the
range [110, 135] GeV. Jets from unmatched tt̄ events peak together with QCD jets. However, the

BKG

W
Z

H→bb/H→WW
top

http://link.springer.com/article/10.1007/JHEP02(2015)118)


Simple Example
• Chris Rogan (while grad student on CMS experiment) invented a set of observables (known as 

Razor) for separating SUSY events from their backgrounds. (https://arxiv.org/abs/1006.2727) 

• My group brought the technique to the ATLAS experiment… 3 searches/papers in LHC Run 1. 

• Chris moved to ATLAS when he moved to Harvard… but we never had chance to directly work 
together (though my postdoc/student do). 

• We just finished (for ICHEP 2016) a search based on “Recursive Jigsaw”, a new set of 
observables Chris developed with Paul Jackson. 

• An uncorrelated basis of observables based on successive boosts into decay frames of 
the particles.
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has on other, correlated, variables. The most striking
example of this complementarity can be seen in the two-
dimensional distributions of p CM

ISR,T and RISR, shown in
Figure 4 for signal and backgrounds. Analogous to Fig-
ure 2, increasing p CM

ISR,T results in a narrowing of the

RISR distribution for compressed signals, while p CM
ISR,T

and RISR are strongly anti-correlated for backgrounds.
Hence, progressively stricter p CM

ISR,T requirements yield
improved RISR discrimination, with the optimal selection
for the latter depending on the signal characteristics, in
particular the ratio m�̃0/mP̃ .
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FIG. 4. Distribution of the p CM
ISR,T as a function of RISR for (from left to right) boson+jets and top+X backgrounds, gluino

and squark pair-production signal samples.

As is typical in searches for squarks and gluinos, se-
lection requirements based on reconstructed jet multi-
plicity can suppress contributions from backgrounds with
characteristically fewer jets, such as di-boson and vector-
boson + jets processes. Using the decay tree interpreta-
tion imposed on each event, the e�cacy of such require-
ments can be enhanced by taking into account the par-
titioning of jets between the V and ISR systems. While
the multiplicity of ISR-associated jets tends to be similar
between signals and backgrounds, the number of jets in
each event assigned to the V system, NV

jet, is a powerful
discriminant, as demonstrated in Figure 5. Increasing
mass-splittings between parent and daughter sparticles
result in, on average, larger NV

jet, with cuts on this ob-
servable suppressing vector boson + jets backgrounds in
particular.
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FIG. 5. The number of jets with minimum pT > 20 GeV
assigned to the V frame, NV

jet, after application of the p CM
ISR,T

and RISR selections described in Table I. Gluino signals tends
to have a larger NV

jet compared to SM backgrounds.

The complementarity of the NV
jet selection requirement

with RISR is illustrated in Figure 6, where the two-
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FIG. 6. Distribution of Number of jets with momentum
greater than 20 GeV, assigned to the Visible system ‘V’ as
a function of RISR for the boson+jets (upper left), di-boson
(upper right), top+X (lower left) and gluino signal (lower
right) samples.

dimensional distribution of NV
jet and RISR is plotted for

vector boson+jets, di-boson and top+X, to be compared
with a gluino signal with a mass-splitting of 100 GeV.
Notably, the large background contributions from bo-
son+jets and di-boson in the high RISR region occur at
NV

jet = 1. These processes include W ! ⌧⌫, where the
hadronically decaying ⌧ lepton is mis-identified as a jet,
and Z(! ⌫⌫̄) events with only one associated jet in the
V system. For gluino signals, a minimum of three jets
associated with the sparticle system is a favorable se-
lection, whereas cases where the mass-splitting is larger
tend to benefit from the imposition of an even tighter
requirement. A useful anti-correlation between RISR and
NV

jet can be exploited to define di↵erent signal regions,
benefitting from their interplay.

The distribution of the transverse mass of all the con-
stituents of the S system, MS

T , as a function of RISR,

http://arxiv.org/pdf/1607.08307.pdf
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masses their weakly interacting daughters (�̃0). An ex-
perimental search for instances of these events can be dif-
ficult if the mass-splitting between these sparticle states,
mP̃�m�̃0 , is small, as the momenta of each parent sparti-
cle’s decay products (both visible and invisible) will not
receive a large amount of momentum in their produc-
tion. If the mass-splitting scale in sparticle production is
to that of SM background processes then disentangling
the two is challenging.

In this case, it is not the mass-splitting scale which is
distinctive from backgrounds, but rather, the potentially
large absolute mass-scale of weakly-interacting particles
in these events. While we cannot measure these masses
from only the measurement of missing transverse mo-
mentum ( 6 ~ET ), as it only represents the sum momentum
of escaping particles, we can gain indirect sensitivity by
observing their reaction to a probing force. The labora-
tory of a hadron collider naturally provides such a probe:
strong initial state radiation from interacting partons can
provide large momentum to the sparticles produced in
these reactions, in turn endowing their decay products
with this momentum. In the limit where the LSPs re-
ceive no momentum from their parents’ decays, the 6 ~ET
results solely from the recoil against ISR, and the follow-
ing approximation holds:

6 ~ET ⇠ �~p ISR
T ⇥ m�̃

mP̃

, (1)

where ~p ISR
T is the total ISR system transverse momen-

tum.
Recent studies of searches for compressed SUSY sig-

nals in the literature have suggested exploiting this fea-
ture. In these analyses, a kinematic selection is used to
isolate events where a single, hard ISR jet recoils approx-
imately opposite 6 ~ET in the event transverse plane. One
can then use various reconstructed proxies of the quantity
| 6 ~ET |/|~p ISR

T |, such as | 6 ~ET |/p lead jet
T or | 6 ~ET |/

p
HT , as ob-

servables sensitive to the presence of massive LSPs [6, 7].
Alternatively, using assumed knowledge of the sparticle
mass-splittings, one can attempt to sort non-ISR jets
from radiative ones using, for example, the sum of jet
energies in each class and multiplicities as discriminat-
ing observables [8]. While these approaches all benefit
from the above feature, they are limited to the sub-set
of events where the momentum of the ISR system is car-
ried predominantly by a single jet. For less restrictive
event selections, the suggested observables become pro-
gressively less accurate estimators of | 6 ~ET |/|~p ISR

T | and,
correspondingly, less sensitive to the kinematic correla-
tion between radiated jets and missing momentum.

We propose a di↵erent approach to an ISR-assisted
search for compressed signals, both generalizing to cases
where momentum can be shared democratically among
many radiated jets and attempting to more accurately re-
construct the quantity | 6 ~ET |/|~p ISR

T |. Using the technique
of Recursive Jigsaw Reconstruction [9], a “decay tree” is
imposed on the analysis of each event, chosen to capture

the kinematic features specific to the signal topology un-
der study. The decay tree both specifies the systems of
relevant reconstructed objects and the reference frames
corresponding to each intermediate combination of them.
The analysis of each event proceeds by assigning recon-
structed objects to their appropriate places in the decay
tree, determining the relative velocities relating each ref-
erence frame, and calculating kinematic observables from
the resulting event abstraction. The simplified decay tree
for generic compressed scenarios is shown in Figure 1.

LAB

CM

ISR S
V I

Lab State

Decay States

Visible States

Invisible States

FIG. 1. A simplified decay tree diagram for analyzing com-
pressed signal topologies in events with an ISR system.

In this decay tree, each reconstructed object hypoth-
esized to come from the decay of sparticles in the event
is assigned to the “V” system, while those identified as
initial state radiation are associated with “ISR”. With
the missing momentum reconstructed in each event in-
terpreted as the system “I”, the total sparticle system
(“S”) and center-of-mass system of the whole reaction
(“CM”) are defined as the sum of their constituents.
With the four-vectors of each element of the decay tree
specified, an estimator of the quantity | 6 ~ET |/|~p ISR

T |, RISR,
is calculated as:

RISR ⌘ |~p CM
I,T · p̂ CM

ISR,T |
|~p CM

ISR,T |
, (2)

where subscripts indicate the system and superscripts the
reference frame the momentum is evaluated in. As the
concept of “transverse” is a frame-dependent construc-
tion in the laboratory frame, we employ the convention
where the boost relating a specific reference frame to the
laboratory is decomposed into a component parallel to
the beam-line and a subsequent transverse portion. The
transverse plane in a reference frame is then defined as
that perpendicular to longitudinal velocity of the trans-
formation.
In order to elucidate the behavior of RISR, we con-

sider the example of neutralino (�̃0
2) pair-production at a

https://arxiv.org/abs/1006.2727


ATLAS Calorimeter
• Ideally suited for “imaging” ~ 64 x 36 x 7 3D Image 

• 200K Calorimeter cells measure energy deposits. 

• Interesting Challenges: non-uniform granularity, 
cylindrical geometry. 

• High impact:  

• Improve Identification and energy resolution make 
the peaks stand out. 

• Turn DNN into generative model for fast shower 
simulation. 

• High potential: we don’t use all information so room for 
improvement 

• e/gamma: take full advantage of the high granularity 
and accordion structure 

• hadronic calibration: take full advantage of 
longitudinal sampling and other handles  

• particle flow: correlate with tracks (and vertex) for 
hadronic calibration, taus, jet-tagging, boosted 
objects…  

• Problem: Private Data…



DNN+HEP Software Needs (1/4) 
1. Inference in HEP Frameworks: 

• Need optimized and validated inference implementation. 

• Nova uses Caffe in art.  

• LArSoft/ATLAS using handwritten C++. 

• TMVA has similar new DNN implementation (w/ GPU support)  

• DNN weights can be Gigabytes, likely need  

• Condition DB-like systems storage. 

• Memory sharing between processes/threads. 

• I can imagine a DL service similar to ATLAS APE GPU service:  

• Processes are client of server(s) that talk to backends/accelerators. 

• No reason for every experiment to reinvent the wheel here…



2. Training systems: 

• Training DNNs efficiently generally requires GPUs (or other future accelerators).  

• Hyper-parameter scans critical part of DNN development workflow. 

• Great use of GPUs on HPCs. 

• Google and other clouds specifically target DL. 

• Today’s training samples can already be 10s of Terabytes, requiring massive parallelism. 

• Data Parallelism: Bottlenecked by gradient syncing between GPUs or systems. Lots of Engineering in 
Industry already. 

• Model Parallelism: Less sync’ing but only makes sense for large enough model. 

• No more embarrassingly parallel. Must provision large number of machines. 

• As DNNs become essential, training them becomes part of software releases, simulation, reco,… cycle. 

• New simulation/reco can require regenerating large training sets (various conditions) and running long 
training before using reco.  

• Somewhat analogous to calibration on express streams. 

• I can imagine Workflow and Data Management systems designed for DL training workflows on any 
available resource. 

DNN+HEP Software Needs (2/4) 



3. Opportunistic Data Generation/Processing: 

• DL generally requires huge independent training samples. 

• Probably need to resort to Data Augmentation, Fast MC, etc… when possible. 

• But the data is private, making collaboration and rapid publication difficult. 

• Collaboration with Machine Learning experts and among experiments require public data 
sets. 

• Publicly available simulation and reconstruction (for base-line). (see: Journal of Brief 
Ideas.) 

• Reconstruction DNNs will likely require Geant4. (i.e. CPU intensive) 

• No dedicated resources, so rely on opportunistic CPU. 

• Need to store and distribute large data-sets. 

• I can image WMS/DDM systems allowing users to opportunistically run docker containers 
on any system, and centrally collecting samples for everyone. 

DNN+HEP Software Needs (3/4) 

http://beta.briefideas.org/ideas/ff0489d51bdb17359cef823c1d6b7029
http://beta.briefideas.org/ideas/ff0489d51bdb17359cef823c1d6b7029


4. Event Processing within Deep Learning Frameworks 

• DL will potentially become integral to our software and trigger 

• We may replace code with weights. 

• DL integrated into HEP frameworks. Not just an external. (example next slide)  

• Many-core/FPGA/neuro-morphic accelerators may prolong Moore’s law 

• Experiments like DUNE will run for 30 years and must keep up with emerging tech. 

• Frameworks must [automatically] optimize and place computations on a variety of hardware. 

• May need to distribute processing of individual events across cluster (like HEP trigger)  

• Use network hardware for primitive operations during transfers. 

• Partially process on specialized machines (specific accelerators, HPC, massive memory, …) 

• Threading in GaudiHive, CMS FW, art, … use data flow programming model (graphs), like many DL 
systems.   

• Industry will highly optimize DL systems and provide services around them.

DNN+HEP Software Needs (4/4) 



Weaving-in DNN Reco 
Raw Data

Sub-detector 2 
Feature Extraction Alg

DNN Pattern 
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Feature Extraction 

DNN
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Feature List Feature Map
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Feature Map = 

DNN Combined 
Reconstruction 

Fitting Alg 1 Fitting Alg 2
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Reconstruction Alg

From Alg From DNN

Simultaneously 
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R&D Proposal
• Premise: We need new frameworks to take advantage of DL and emerging architectures. 

➡ Build HEP Framework on top of a DL Framework.  

• If we envision new frameworks need to do R&D now, ver 1.0 by 2020, deployed by 2025. 

• R&D Proposal (can we do traditional HEP Reco in DL Framework?): 

• Build HEP Reco on top of Google’s OpenSource TensorFlow 

• General computation system, based on Directed Acyclic Graphs. 

• Framework for Automatic optimizations (like Theano), though currently primitive.   

• Supports all architectures and distributes computation across GPUs and clusters.  

• Build a HEP Framework in python (like Keras) with C++ wrapped in TF ops. 

• 3 project ideas: 

• First steps of LArTPC reco: deconvolution, hit finding, … 

• Online Sparsification and compression of LArTPC data for protoDUNEs. 

• ATLAS GPU Trigger Demonstrator: Wrap the existing GPU/CPU kernels in TensorFlow Ops. 


