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Frontiers

» Energy Frontier. Large Hadron Collider (LHC) at 13 TeV now, High Luminosity (HL)-
LHC by 2025, perhaps 33 TeV LHC or 100 TeV Chinese machine in a couple of
decades.

« Having found Higgs, moving to studying the SM Higgs find new Higgses
» Test naturalness (\Was the Universe and accident?) by searchigg for New Physics

like Supersymmetry that keeps Higgs light without 1 partin 10 fine-tuning of
parameters.

e Find Dark Matter (reasons to think related to naturalness)

i
il

 Intensity Frontier:

* B Factories: upcoming SuperKEKB/SuperBelle

* Neutrino Beam Experiments:

« Series of current and upcoming experiments: Nova, MicroBooNE, SBND,
ICURUS

« US’s flagship experiment in next decade: Long Baseline Neutrino Facility
(LBNF)/Deep Underground Neutrino Experiment (DUNE) at Intensity
Frontier

* Measure properties of b-quarks and neutrinos (newly discovered mass)... search
for matter/anti-matter asymmetry.

Damping Rings IR & detectors compressor

« Auxiliary Physics: Study Supernova. Search for Proton Decay and Dark Matter.

e- bunch

* Precision Frontier. International Linear Collider (ILC), hopefully in next decade. Most
energetic e € machine.

e Precision studies of Higgs and hopefully new particles found at LHC. meiir



Where i1s ML needed?

« Traditionally ML Techniques in HEP
» Applied to Particle/Object Identification

« Signal/Background separation

* Here, ML maximizes reach of existing data/detector... equivalent to additional integral luminosity.
» There is lots of interesting work here... but I'll skip today.

o Some slides in backup...

 Now we hope ML can help address looming computing problems

« Reconstruction
* LArTPC- Algorithmic Approach very difficult

 HL-LHC Tracking- Pattern Recognition blows up due to combinatorics

e Simulation

« LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation.



LArTPC Reco Challenge

Neutrino Physics has a long history of hand scans.

* (QScan: ICARUS user assisted reconstruction.

Full automatic reconstruction has yet to be

demonstrated.

 LArSoft project:

Decompression

!

Event Splitting

|

Filtering and
Deconvolution

AN

e art framework + LArTPC reconstruction

algorithm

e started in ArgoNeuT and contributed to/used
by many experiments.

v
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l Disambiguation

 Full neutrino reconstruction is still far from

expected performance.
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Computing Challenge

« Computing is perhaps the biggest challenge for the HL-LHC
Data estimatesfor 1st year of HL-LHC(PB)

» Higher Granularity = larger events. o0
» O(200) proton collision / crossing: tracking pattern recognition -
combinatorics becomes untenable. &0

« O(100) times data = multi exabyte datasets. 20 =

» Moore’s law has stalled: Cost of adding more transistors/silicon area no longer - —
decreasing.... for processors. Many-core co-processors still ok. Raw
» Naively we need 60x more CPU, with 20%/year Moore’s law giving only Data:

Raw 2016: 50 PB - 2027: 600 PB

6-10x in 10-11 years. Derived (1 copy): 2016: 80 PB = 2027: 900 PB

* Preliminary estimates of HL-LHC computing budget many times larger than
LHC. CPU Needsfor 15t Year of HL-LHC(KHSD6)

250000
m ALICE = ATLAS mCMS LHCb

e Solutions:

» Leverage opportunistic resources and HPC (most computation power in
highly parallel processors).

150000

100000

» Highly parallel processors (e.g. GPUs) are already > 10x CPUs for certain
computations.

50000

e Trend is away from x86 towards specialized hardware (¢.g. GPUs, Mics, .

FPGAs, Custom DL Chips) CPU (H36)
o Unfortunately parallelization (i.e. Multi-core/GPU) has been extremely CPU:

difficult for HEP. « x60 from 2016

From WLCG Workshop Intro, Ian Bird, 8 Oct, 2016



Reconstruction



Tracking

 Measure Charged particle trajectories. It B-field, then
measure momentum.
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Calorimetry

* Make particle interact and loose all energy, which we measure. 2 types:

* Electromagnetic: e.qg. crystals in CMS, Liquid Argon in ATLAS.

 Hadronic: e.g. steel +

scintillators Pos -~ ATLAS

+ e.gATLAS / PN . ;Effﬁgrlmeyrﬁ

Oate: 20712.D%<171 2:03:42

e 200K Calorimeter cells
measure energy
deposits.

* 64 x36x7 3D Image

Super Cells
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| HC/ILC detectors
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Neutrino Detection

In neutrino experiments, try to determine flavor and estimate energy of
iIncoming neutrino by looking at outgoing products of the interaction.

Typical neutrino event Outgoing lepton:

Flavor: CC vs. NC, u* vs. u,evs.y
Energy: measure

Incoming neutrino:
Flavor unknown

Energy unknown

Mesons:
Final State Interactions

Energy? ldentity?

Target nucleus:
Nucleus remains intact for low Q2
N-N correlations

Outgoing nucleons:
Visible? Energy?

Jen Raaf



Neutrino Detectors

* Need large mass/volume to maximize chance of neutrino interaction.
* Technologies:
« Water/Oil Cherenkov
e Segmented Scintillators
Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.
* Provides tracking, calorimetry, and ID all in same detector.
* Chosen technology for US’s flagship LBNF/DUNE program.
e Usually 2D read-out... 3D inferred.
* Gas TPC: full 3D
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Reconstruction

Service
Starts with raw inputs (e.g.Voltages)
Cell
Low level Feature Extraction:e,g, Builder
Energy/Time in each Calo Cell
Pattern Recognition: Cluster adjacent cionA . Cell
cells. Find hit pattern. ‘Calibrator
ction B
Fitting: Fit tracks to hits.
Cluster
Combined reco:e.g. Builder
® Matching Track+EM Cluster = Electron.
: e cionA ~Cluster
® Matching Track in inter detector + ] ——

muon system = Muon ction B

N
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Deep Learning



Artificial Neural Networks

* Biologically inspired computation, (first attempts in 1943)

* Probabilistic Inference: e.g. signal vs background Y1 Y ¥q
* Universal Computation Theorem (1989) T T T
. . e . N N TN
* Common use in HEP, signal/background classification or particle / ) \

ID with high-level features derived from raw data as input.

* Multi-layer (Deep) Neutral Networks:

Not a new idea (1965), just impractical to train. Vanishing
Gradient problem (1991)

Solutions:
* New techniques: e.g. better activation or layer-wise training

* More training: big training datasets and lots of computation
.. big data and GPUs

Deep Learning Renaissance. First DNN in HEP (2014).
Amazing Feats: Audio/Image/Video recognition, captioning, and

generation. Text (sentiment) analysis. Language Translation.
Video game playing agents.

Rich field: Variety of architectures, technigues, and applications.

Images from Wikipedia


http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735

Recent History

 Deep Learning teats that sparked broad interest:

e 2012, Google 1B DNN learns to identify cats (and 20000
other types of objects) (Wired Article, paper)

e Raw input. trained with 200x200 pixel images from
YouTube

o Unsupervised.: the pictures were unlabeled.

e Google cluster 16000 cores ~ $1M. Redone with $20k
system with GPUSs.

 2013: Deep Mind builds Al that plays ATARI (Blogpost,
Nature,YouTube,YouTube)



http://www.wired.com/2014/12/deep-learning-renormalization/
http://static.googleusercontent.com/media/research.google.com/en/us/archive/unsupervised_icml2012.pdf
http://robohub.org/artificial-general-intelligence-that-plays-atari-video-games-how-did-deepmind-do-it/
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk

Computer Vision - Image Classification

Imagenet Improvement Over the Years
30.00%
e Imagenet
e Over 1 million images, 1000 o \
classes, different sizes, avg ] \
482x415, color T oo
e 16.42% Deep CNN dropout in © =
2012 o
e 6.66% 22 layer CNN (GoogLeNet) = 1200
in 2014 n
o 4.9% (Google, Microsoft) super- o 10.00% \
human performance in 2015 |E
5.00%
0.00% . : . .
2010 2011 2012 2013 2014
Year
Sources: Krizhevsky et al ImageNet Classification with Deep Convolutional Neural Networks, Lee et al Deeply supervised nets 2014,

Szegedy et al, Going Deeper with convolutions, ILSVRC2014, Sanchez & Perronnin CVPR 2011, http:/Aww.clarifai.com/
Benenson, http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

P.Baldi



Feedforward NNs

Neural Turin '
eural Turing Machines Memory NNs

L uke deOliverra

Stanford Institute for Computational
& Mathematical Engineering | {CME
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(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from —1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally 1n (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

https://arxiv.org/pdf/1606.03657.pdf



https://arxiv.org/pdf/1606.03657.pdf

Why go Deep?

 DNN-based classification/regression generally out perform hand crafted algorithms.

» Better Algorithms

e In some cases, it may provide a solution where algorithm approach doesn’t exist or fails.
* Unsupervised learning: make sense of complicated data that we don’t understand or expect.
» Easier Algorithm Development. Feature Learning instead of Feature Engineering

* Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS >
$250M spent software)

* Quickly perform performance optimization or systematic studies.

» Faster Algorithms

After training, DNN inference is often faster than sophisticated algorithmic approach.

DNN can encapsulate expensive computations, e.g. Matrix Element Method.

Generative Models enable fast simulations.

Already parallelized and optimized for GPUs/HPCs.

Neuromorphic processors.
20



.12 woman
-0.28 In

1.23 white
|.45 dress
0.06 standing
-0.13 with
3.58 tennmis
|.81 racket
0.00 two
0.05 people
0.141n
0.30 green
-0.09 behind
-0.14 her




ATLAS

EXPERIMENT

| Run Number: 271298, Cvent Number: 402602858

Date: 2015-07-11 02:09:14 CEST




Examples of DL in HEP



~eature Learning

* Feature Engineering: ¢.g. Event Reconstruction ~ Feature Extraction, Pattern Recognition, Fitting, ...
* Deep Neutral Networks can Learn Features from raw data.
 Example: Convolutional Neural Networks - Inspired by visual cortex

» Input. Raw data... for example 1D = Audio, 2D = Images, 3D = Video

» Convolutions ~ learned feature detectors

- Feature Maps

» Pooling - dimension reduction / invariance

» Stack: Deeper layers recognize higher level concepts.

» Over the past few years, CNNs have lead to exponential improvement / superhuman performance on Image
classification challenges. Current best > 150 layers.

» Obvious HEP application: “Imaging” Detectors such as TPCs, High Granularity Calorimeters, or Cherenkov Ring Imaging.

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



Neutrino PnysICS

Core Physics requires just measuring neutrino flavor and energy. HFadionic
80 eature
T : : — - I Map
Generally clean (low multiplicity) and high granularity. -
First HEP CNN application: Nova using Siamese Inception CNN. Caf™
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http://arxiv.org/pdf/1604.01444.pdf
http://arxiv.org/pdf/1604.01444.pdf
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LArIAT (in progress)
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than image classification.
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sufficient.
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Semantic Segmentation
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NEXT Experiment

Neutrinoless Double Beta Decay using Gas

TPC/SiPMs

Signal: 2 Electrons. Bkg: 1 Electron.

Hard to distinguish due to multiple scattering.

3D readout. ..

candidate for 3D Conv Nets.

Just a handful of signal events will lead to

noble prize

e (Can we trust a DNN at this level?
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NEXT Detector Optimization

* |dea 1: use DNNs to optimize detector.

 Simulate data at different resolutions

* Use DNN to quickly/easily assess best performance for given resolution.
Analysis Signal eff. (%) B.G. accepted (%)

DNN analysis (2 x 2 x 2 voxels) 86.2 4.7
Conventional analysis (2 x 2 x 2 voxels) 86.2 7.6
DNN analysis (10 x 10 x 5 voxels) 76.6 9.4
Conventional analysis (10 x 10 x 5 voxels) 76.6 11.0

* |dea 2: systematically study the relative importance of various physics/detector effects.

« Start with simplified simulation. Use DNN to assess performance.

e Turn on effects one-by-one.

2x2x2 voxels

Run description

Avg. accuracy (%)

Toy MC, ideal 99.8
Toy MC, realistic Ov 3/ distribution 98.9
Xe box GEANT4, no secondaries, no E-fluctuations 98.3
Xe box GEANT4, no secondaries, no E-fluctuations, no brem. 98.3
Toy MC, realistic Ov33 distribution, double multiple scattering 97.8
Xe box GEANT4, no secondaries 94.6
Xe box GEANT4, no E-fluctuations 93.0
Xe box, no brem. 92.4
Xe box, all physics 92.1
NEXT-100 GEANT4 91.6
10x10x5 voxels
NEXT-100 GEANT4 84.5
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Semi-supervised Learning

* Basic idea: Train network to reproduce the input.

* Example: Auto-encoders input culput
5 code sy

* De-noising auto-encoders: add noise to input only.

» Sparse auto-encoders:

» Sparse latent (code) representation can be exploited for
Compression, Clustering, Similarity testing, ...

dacader
ancoder

Anomaly Detection
 Reconstruction Error

e Quitliers in latent space
Bottleneck Hidden Layer

Transfer Learning L _j\ l /(4

() ()

o oA - o 7 /vv;\"
* Small labeled training sample? /. U, AJ -\
N ‘ -

>

\
/
I

-

 Train auto-encoder on large unlabeled dataset (e.g. data). Q O A~ U

\
{,. N ~/( £
P A P
e Train in latent space on small labeled data. (e.qg. rare j/ \_
signal MC). \_

» Easily think of a dozen applications.



| earning Representations

« Example: Daya Bay Experiment (Evan Racah, et al)

o Input: 8 x 24 PMT unrolled cylinder. Real Data (no simulation)

e 2 Studies:

Supervised CNN Classifier

e Labels from standard analysis: Prompt/Delayed Inverse Beta Decay,

Muon, Flasher, Other.

e Convolutional Auto-encoder (semi-supervised)

» Clearly separates muon and |IBD delay without any physics knowledge.

» Potentially could have |ID’ed problematic data (e.g. flashers) much earlier.
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http://arxiv.org/pdf/1601.07621v1.pdf

Generative Models

Electromagnetic
shower (e, y)

» Likelihood Approximation relies simulation
 Most computationally expensive step, so any speedup has huge impact.
» More generally, simulation based on data would be a powerful tool.
o For example, we can build a Hadronization model purely from data.
 DNNs Generative Models enable building simulations purely from examples.

» Generative Adversarial Nets (Goodfellow, et. al. arxiv:1406.2661).
Simultaneously train 2 Networks:

» Discriminator (D) that tries to distinguish output and real example~
« Generator (G) that generate the output that is difficult to distingui:
» Variational Auto-encoders:
» Learn a latent variable probabilistic model of the input dataset.
o Sample latent space and use decoder to generate data.

» Particle showering is slowest part of the micro-physics simulation...

» Various techniqgues for fast showering (e.g. shower template libraries) are : &
common.

 DNN Generative Models are being pursued inside the experiments (K.
Cranmer, G. Louppe, ...) for this task...



Learning Particle Physics by Example:
Location-Aware Generative Adversarial Networks for
Physics Synthesis

Luke de Oliveira®, Michela Paganini**, and Benjamin Nachman®

“ Lawrence Berkeley National Taboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
® Department of Physics, Vale University, New Haven, CT 06520, USA

F-mail: 1ukedaoliveira@lbl.pgov, michala.paganini@yale.edu, bnachman@cern.ch

ABSTRACT: We provide a bridge between generative modeling in the Machine Learning community
and simulated physical processes in High Enerpy Particle Physics by applying a novel Generative
Adversarial Network (GAN) architecture to the production of jet images — 2D representations of
cnergy depositions from particles interacting with a calorimeter. We propose a simple architecture,
the Location-Aware Generative Adversarial Network, that learns to produce realistic radiation patterns
from simulated high energy particle collisions. The pixel intensitics of GAN-gencrated images faithfully
span over many orders of magnitude and exhibit the desired low-dimensional physical properties (i.e.,
jet mass. n-subjettiness. ete.). We shed light on limitations, and provide a novel empirical validation
of image quality and validity of GAN-produced simulations of the natural world. This work provides
a basc for further explorations of GANSs for use in faster simulation in Iligh Encrgy Particle Physics.

https://arxiv.org/pdf/1701.05927 . pdf
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Plans...



Public Datasets

» Biggest obstacles to DNN research is Data accessibility.
» Detector level studies require CPU intensive simulations.
* DNNs require large training sets with full level of detail (i.e. not 4-vectors).
» Experiments have such samples, but they are not easily accessible and not public.
 Difficult to collaborate with DL community or other experiments.
» Public datasets (Unveiling next week at DS@HEP Workshop at Fermilab):

« We provide data, tools (e.g. fast data read), fully setup problems. Goal is build working groups around each dataset.

LArTPC (Sepideh Shahsavarani, AF): LArlIAT detector. 1 M of every particle species (including neutrinos).

« Challenges: Particle/Neutrino Classification and Energy Reco, Noise Suppression, 2D->3D.

Calorimetry (Maurizio Pierini, Jean-Roch Vlimant, Nikita Smirnov, AF): LCD Calorimeter.

« Challenges: PID/Energy Reco. Simulation.

Tracking
o Simple 2D tracking data shown at Connecting the Dots will be used for DS@HEP.

o TrackingML/ACTS (David Rousseau, Andreas Salzberger, ... ) HL-LHC like detector/environment.

CMS Jets: Full Reco Simulated Jets for boosted object and jet ID



LArTPC 2D to 3D

LArTPC wire readout necessary due to heat load. C e

* Full Pixelized readout would give ~ N’ datapoint/time
slice

» Wire readout give ~2N datapoint/time

Information loss is “recovered” in reconstruction by :
assuming particle interaction topologies (track, shower, ...) L

Tomographic approach (Wirecell) “resolves” ambiguities
through costly Markov Chain MC

Perhaps a DNN can learn the topologies and infer a 3D
image

* Imagine an Auto-encoder like setup with

* Input: 2x (or 3x) 2D images

* Qutput: 3D image.




Science Fiction?”

* Imagine in next 10 years DNN lives up to the hype... e Large portions of HEP code replaced by deep
neutral network architecture and weights.
» We've proven DNNSs gets us better, faster, easier
software... and hardware. « HEP Software Frameworks built on top of

DL Frameworks.
* Industry investment in DNNs has yielded
significant gain over Moore’s Law « To DL systems, our computing looks like
, _ everyone else’s... e.g. other sciences.
* Custom DL/neuromorphic chips and HPCs
e Optimization, deployment, operations handled

* Software Frameworks by professional Data Engineers.

e Cloud Services . . . .
e Trigger implemented in custom inference

e Consultants: systems built from commodity hardware.

« Data Scientists: DL reduces need for * Computation performed on DL Clouds and

domain-specific expertise (e.g. in scientific HPCs.
biology now). | | | |
* DNNSs designed and trained in collaboration
« Data Engineers: low level optimization, with professional Data Scientists.

deployment, operation...
 HEP PhDs trained/funded by industry to apply

» Actually, all of these already exist! DL to HEP and then transition to industry.



~inal Thoughts

* For decades HEP had the biggest datasets... was overtaken by industry mid-2000’s... may be the biggest
datasets again in the next decade.

e Computing for HL-LHC will be prohibitively expensive unless we find some clever technigques.
* Deep Learning and Neuromorphic processors are a promising solution.
* Deep Learning can change how science is done.
* Improve performance. Save time and money.
* Mitigate stalling of Moore’s law.
« Use most recent hardware.

* Allow scientists to focus on concepts rather than implementation.Deep Learning serves as a tool to
optimize designs and traditional techniques, indirectly improving our measurements.

 |f we want to be ready for the DL revolution in 10 years, we need to do R&D now.
* We can't forget that DL can complicated things:

e Systematics. Data/MC agreement.

* Generate large independent training and calibration samples.

 New complicated “release”, production, and analysis cycles/work-flows.
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HOW dO we
‘'see” particles”

- Charged particles ionize media
* Image the ions.

* In Magnetic Field the curvature of
trajectory measures momentum.

 Momentum resolution degrades as
less curvature: o(p) ~c p @ d.

* d due to multiple scattering.
 Measure Energy Loss (~ # ions)

* dE/dx = Energy Loss / Unit Length =
f(m, v) = Bethe-Block Function

 |dentify the particle type 0|y mesons

T_Mmesons

» Stochastic process (Laudau)

Protons

* Loose all energy — range out.

Energy loss in air [keV/cm]

Electrons
—————

* Range characteristic of particle type.




How do we “see” particles”

e Particles deposit their energy in a stochastic process know as

. . . ABSORBER
“showering”, secondary particles, that in turn also shower. o’y
* Number of secondary particles ~ Energy of initial particle. . ,,___d.:/’
MnYn P /"0// ’\,\,\,\/\A
* Energy resolution improves with energy: o(E) / E = a//JE ® b/E @ c. \[‘\.@,\1_’_\:‘;_:__‘\Mf\"’ _
* a =sampling, b = noise, ¢ = leakage. g E ‘;’ Mi
; XO e
* Density and Shape of shower characteristic of type of particle.
* Electromagnetic calorimeter. Low Z medium /\/\/\
Light particles: electrons, photons, m —yy interact with electrons WN /AN A/A
in medium - AN

* Hadronic calorimeters: High Z medium

* Heavy particles: Hadrons (particles with quarks, e€.g. charged WV\N\/W\/\\NV\VWNV\NA/V\V\M\\/\/\

pions/protons, neutrons, or jets of such particles)

* Punch through low Z.

* Produce secondaries through strong interactions with the
nucleus in medium.

* Unlike EM interactions, not all energy is observed.




TR

L arge LArTPC Dataset
111

* Training samples have been at best ~100k
examples.... usually much less.

* My students (S. Shahsavarani and G.
Hilliard) simulated a huge sample of
LArTPC events (LArIAT Detector).

 Necessitated by Energy Regression
studies.

« 1 M of every particle species: €%, p™,
Kia ﬂi, TI-O’ ui’ V! Ve, Vp; VT

e Flat Energy distribution.

« Will soon make these publicly available.

04

» Collaborators at UCI (P. Sadowski, et al)
were able to get better performance by
S training for a week on this large dataset.

co 0.2 c.c C6 03 10
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| CD Calorimeter

(Maurizio Pierini, Jean-Roch Vlimant, Nikita Smirnov, AF)

CLIC is a proposed CERN project for a linear accelerator of
electrons and positrons to TeV energies (~ LHC for protons)

* Not a real experiment yet, so we (Maurizio Pierini, Jean-Roch
Vlimant, Nikita Smirnov, AF) can simulate data and make it
public.

e The LCD calorimeter is an array of absorber material and silicon
sensors comprising the most granular calorimeter design
available

Data is essentially a 3D image

0
» First studies, m vs y classification with various DNNSs.

ROC Curve

Much more to come... = ———=
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HL-LHC Tracking

Tracking steps: hit prep, seeding, pattern recognition, track fitting, track cleaning

» Highly optimized already for offline reconstruction for Run 2

» ~30-50 proton collisions per beam crossing

» 1 kHz data stream, processed offline.

HL-LHC: ~ 200 proton collisions per beam crossing

* combinatorics cause pattern recognition time to grow exponentially

* Busy environment requires tracking at 40 MHz for trigger

Need Pattern Recognition that scales better with number of hits. Deep Learning?

Again an obstacle to applying deep learning techniques is accessibility to the data.

Tracking ML (David Rousseau, Andreas Salzberger, ..., AF): Hoping to have ML community develop solutions, mirroring the
HiggsML Challenge.

« ACTS: Standalone version of ATLAS Tracking Simulation/Reconstruction developed for this challenge.
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How do we “see” particles”

e Charged Particles traveling faster than speed of light in medium
emit Cherenkov light (analogous to sonic boom).

e Light emitted in cone, with angle function of speed and mass.

 Depending on context, allow for particle identitication and/or
speed measurement.

Neutrino " Neutrino ) (+) ©

+ o
Nudeus Electron ©

Muon or Electron

Cherenkov light Cherenkov light

J

)

o

h

|
]
|

1

2

The generated charged particle emits the Cherenkov light.




Slide from Kyle Cranmer:

LIKELIHOOD-BASED COMBINATIONS

fiot (Dsim, G| at) = H Pois(n.|v.(a)) H fe(Teela) | - H folaplay)

cEchannels e=1 pPES




Data Analysis

* QObjectives:

 Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma)

| o . P(x|Hy)
e Measurements: Maximum Likelihood Estimate > kg
P(z|Hy)

 Limits (confidence intervals): Also based on Likelihood

Likelihood

n

p({x}]0) = Pois(n|v(0)) | | p(x|6)

e=1

* nlIndependent Events (e) with Identically Distributed Observables ({x})

* Significant part of Data Analysis is approximating the likelihood as best as we
can.



1

Approximating the Likelihood (i)

in Quantum Field Theory

* Physics is all about establishing a very precise “model” of the underlying 1

phenomena... so we can model our data very well.
Lepton/
Quark 4-vectors

—1

; : - - Soft QCD: Quark Fragmentation
1. Generation: Standard Model and New Physics are expressed in [ - Hadronization ]

language of Quantum Field Theory.

 Enables multi-step ab-initio simulations:

= Feynman Diagrams simplify perturbative prediction of HEP

interactions among the most fundamental particles (leptons, quarks) Particle

4-vectors
2. Hadronization: Quarks turn to jets of particles via Quantum

Chromodynamics (QCD) at energies where theory is too strong to [

]‘<

compute perturbatively. Simulation: Particle OJ

Interactions with Detect
= Use semi-empirical models tuned to Data. T

3. Simulation: Particles interact with the Detector via stochastic creray
Processes Deposits in Detector

]‘<

= Use detailed Monte Carlo integration over the “micro-physics”

Digitization: Detector

4. Digitization: Ultimately the energy deposits lead to electronic signals in Response and Piloup Mixing]

the O(100 Million) channels of the detector.

M)

= Model using test beam data and calibrations.

Detector Response

b

e Qutput is fed through same reconstruction as real data.



| ikelihood Approximations

* Need F({xe}|0) of an observed event (e). The better we do, the more sensitive our measurements.
o Steps 2 (Hadronization) and 3 (Simulation) can only be done in the forward mode. ..
= cannot evaluate the likelihood.
* S0 we simulate a lot of events and use a Probability Density Estimator (PDE), e.g. a histogram.
* {xe} = {100M Detector Channels} or even { particle 4-vectors } are too high dimension.
* |nstead we derive {xe} = { small set of physics motivated observables } = Lose information.
» [Isolate signal dominating regions of {xe} = Lose Efficiency.
e Sometimes use classifiers to further reduce dimensionality and improve significance
* Profile the likelihood in 1 or 2 (ideally uncorrelated) observables.
e Alternative, try to brute force calculate via Matrix Element Method:

P(p"**la) = = [ d®dxydxs| M, (p)|*W (p, p***)

e But it's technically difficult, computahonally expensive, mistreats hadronization, and avoids
simulation by highly simplifying the detector response.



Searching for Exotic Particles in High-Energy Physics with Deep Learning

P. Baldi,! P. Sadowski,! and D. Whiteson?

IDept. of Computer Science, UC Irvine, Irvine, CA 92617
?Dept. of Physics and Astronomy, UC Irvine, Irvine, CA 92617

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle dis-
coveries. Finding these rare particles requires solving difficult signal-versus-background classification
problems, hence machine learning approaches are often used. Standard approaches have relied on
‘shallow’” machine learning models that have a limited capacity to learn complex non-linear functions
of the inputs, and rely on a pain-staking search through manually constructed non-linear features.
Progress on this problem has slowed, as a variety of techniques have shown equivalent performance.
Recent advances in the field of deep learning make it possible to learn more complex functions and
better discriminate between signal and background classes. Using benchmark datasets, we show
that deep learning methods need no manually constructed inputs and yet improve the classification
metric by as much as 8% over the best current approaches. This demonstrates that deep learning

3 approaches can improve the power of collider searches for exotic particles.

—— NN lo+hi-level (AUC=0.81) DN lo+hi-level (AUC=0.88)

Background Rejection

—— NN hi-level (AUC=0.78) DN lo-evel (AUG0.88)

—— NN lo-level (AUC=0.73)

DN hi-level (AUC=0.80)

| | | | |
0.2 0.4 0.6 0.8 1 ' | | |

. o 0.2 0.4 O.|6 0.8 1
Signal efficiency Signal efficiency




Boosted Object Tagging

Pythia 8, QCD dijets, Vs =13 TeV

250<p /GeV <300 GeV, 65 <mass/GeV <95

* Decay products of Highly Energetic heavy particles (i.e. top,
W, Z, H) are collimated into large jets that cannot be resolved.

* Boosted object tagging using Deep Learning is being pursed by
multiple groups in the LHC experiments... mostly the data is

private, so | can’t show.
* Early study by SLAC group (M. Kagan, A. Schwartzman, et al)

» Jet Images: Construct images of the energy deposits of jets
(paper)

* Use classifiers, such as CNNs...

* By studying the features of the CNN, SLAC group got new
insight into color-flow which can be used in traditional

techniques.
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http://link.springer.com/article/10.1007/JHEP02(2015)118)

Simple Example

e Chris Rogan (while grad student on CMS experiment) invented a set of observables (known as
Razor) for separating SUSY events from their backgrounds. (https://arxiv.org/abs/1006.2727)

* My group brought the technique to the ATLAS experiment... 3 searches/papers in LHC Run 1.

e Chris moved to ATLAS when he moved to Harvard... but we never had chance to directly work
together (though my postdoc/student do).

» We just finished (for ICHEP 2016) a search based on “Recursive Jigsaw’, a new set of
observables Chris developed with Paul Jackson.

 An uncorrelated basis of observables based on successive boosts into decay frames of
the particles.

Top (+X) Vs=14 TeV M(%)=1TeV, M(X") =900 GeV Vs=14 TeV
= T T T - r

-\_- - -_'.
==
.-- —

Events / (0.01 x 10 GeV) / 100 fb™!
Events / (0.01 x 10 GeV) / 100 fb
(
N
o
o o
Y
Events / (0.02 x 20 GeV) / 100 fb

FIG. 4. Distribution of the plgﬁfT as a function of Rigr for (from left to right) boson-+jets and top+X backgrounds, gluino
and squark pair-production signal samples. http://arxiv.org/pdf/1607.08307.pdf


https://arxiv.org/abs/1006.2727

ATLAS Calorimeter

* Ideally suited for “imaging” ~ 64 x 36 x 7 3D Image Tile banel
e 200K Calorimeter cells measure energy deposits.

e Interesting Challenges: non-uniform granularity, S

cylindrical geometry. end-cap (HEC)~
igh i : LA electro i
* High impact. s aleciomagnelic

* Improve Identification and energy resolution make L
the peaks stand out. R

* Turn DNN into generative model for fast shower Lar electromcgnetic

barrel

simulation.
* High potential: we don't use all information so room for R -,-l"",\?l:—Tf*a’;'-.':;'-‘|
improvement or

e ¢/gamma: take full advantage of the high granularity
and accordion structure

e hadronic calibration: take full advantage of
longitudinal sampling and other handles

e particle flow: correlate with tracks (and vertex) for
hadronic calibration, taus, jet-tagging, boosted
objects...

>

- Problem: Private Data...

Tile extended barrel

LAr for



DNN+HEP Software Needs (1/4)

1. Inference in HEP Frameworks:
* Need optimized and validated inference implementation.
* Nova uses Caffe in art.
* LArSoft/ATLAS using handwritten C++.
 TMVA has similar new DNN implementation (w/ GPU support)
 DNN weights can be Gigabytes, likely need
« Condition DB-like systems storage.
 Memory sharing between processes/threads.
e | can imagine a DL service similar to ATLAS APE GPU service:
* Processes are client of server(s) that talk to backends/accelerators.

 No reason for every experiment to reinvent the wheel here. ..



DNN+HEP Software Needs (2/4)

2. Training systems:

» Training DNNSs efficiently generally requires GPUs (or other future accelerators).

Hyper-parameter scans critical part of DNN development workflow.

 Great use of GPUs on HPCs.

« Google and other clouds specifically target DL.

Today’s training samples can already be 10s of Terabytes, requiring massive parallelism.

» Data Parallelism: Bottlenecked by gradient syncing between GPUs or systems. Lots of Engineering in
Industry already.

o Model Parallelism: Less sync’ing but only makes sense for large enough model.

* No more embarrassingly parallel. Must provision large number of machines.

As DNNs become essential, training them becomes part of software releases, simulation, reco,... cycle.

* New simulation/reco can require regenerating large training sets (various conditions) and running long
training before using reco.

* Somewhat analogous to calibration on express streams.

| can imagine Workflow and Data Management systems designed for DL training workflows on any
available resource.



DNN+HEP Software Needs (3/4)

3. Opportunistic Data Generation/Processing:
* DL generally requires huge independent training samples.
* Probably need to resort to Data Augmentation, Fast MC, etc... when possible.
* But the data is private, making collaboration and rapid publication difficult.

* Collaboration with Machine Learning experts and among experiments require public data
sets.

e Publicly available simulation and reconstruction (for base-line). (see: Journal of Brief
|deas.)

« Reconstruction DNNs will likely require Geant4. (i.e. CPU intensive)
« No dedicated resources, so rely on opportunistic CPU.
* Need to store and distribute large data-sets.

* | can image WMS/DDM systems allowing users to opportunistically run docker containers
on any system, and centrally collecting samples for everyone.


http://beta.briefideas.org/ideas/ff0489d51bdb17359cef823c1d6b7029
http://beta.briefideas.org/ideas/ff0489d51bdb17359cef823c1d6b7029

DNN+HEP Software Needs (4/4)

4. Event Processing within Deep Learning Frameworks
* DL will potentially become integral to our software and trigger
* We may replace code with weights.
e DL integrated into HEP frameworks. Not just an external. (example next slide)
« Many-core/FPGA/neuro-morphic accelerators may prolong Moore’s law
o Experiments like DUNE will run for 30 years and must keep up with emerging tech.
* Frameworks must [automatically] optimize and place computations on a variety of hardware.
* May need to distribute processing of individual events across cluster (like HEP trigger)
» Use network hardware for primitive operations during transfers.
» Partially process on specialized machines (specific accelerators, HPC, massive memory, ...)

e Threading in GaudiHive, CMS FW, art, ... use data flow programming model (graphs), like many DL
systems.

* Industry will highly optimize DL systems and provide services around them.



Weaving-in DNN Reco

*

Feature List = {Hity, Hito, ...} Raw Data .
From Alg

Sub-detector 1

Feature Extraction Sub-detector 2
DNN Feature Extraction Alg

Featurg/List Fegture Map Feature |Ast Fegtiure Map

Pattern Recognition DNN Pattern Pattern Recognition DNN Pattern
Alg 1 Recognition 1 Alg 2 Recognition 2

Fitting Alg 1 Fitting Alg 2
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R&D Proposal

* Premise: We need new frameworks to take advantage of DL and emerging architectures.
= Build HEP Framework on top of a DL Framework.
* |If we envision new frameworks need to do R&D now, ver 1.0 by 2020, deployed by 2025.
 R&D Proposal (can we do traditional HEP Reco in DL Framework?):
» Build HEP Reco on top of Google’s OpenSource TensorFlow
 (General computation system, based on Directed Acyclic Graphs.
* Framework for Automatic optimizations (like Theano), though currently primitive.
* Supports all architectures and distributes computation across GPUs and clusters.
e Build a HEP Framework in python (like Keras) with C++ wrapped in TF ops.
e 3 project ideas:
o First steps of LArTPC reco: deconvolution, hit finding, ...
* Online Sparsification and compression of LArTPC data for protoDUNESs.

o ATLAS GPU Trigger Demonstrator: Wrap the existing GPU/CPU kernels in TensorFlow Ops



