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4.9. EXAMPLES OF ν AND PLIM IN HERA 107

Figure 4.15 shows a tune scan with the 1996 luminosity optics, 6 flattening snakes and the 3111
scheme at a reference momentum of 820 GeV for various invariant vertical ellipses. The big plot on
top shows Plim(Qy) for the vertical 1, 2, 3 and 4 σ ellipses. It is clearly to be seen that going outwards
in phase space strongly reduces the average Plim even off-resonance. The four small plots below show
zoomed scans of ν and Plim in the range around [Qy] = 1/6 (left) and [Qy] = 1/4 (right) for the 1 σ
(upper row) and 2 σ (lower row) ellipse. In order to show the resonant behaviour of ν and Plim the
resonance lines κ = 3[Qy], κ = 1 − 3[Qy] and κ = 2[Qy], κ = 1 − 2[Qy] are drawn. At this particular
energy the 2-nd order resonance is obviously weaker, i.e. less wide, than the 3-rd order resonance.
Comparing the separation of the 3-rd order doublet for different ellipses demonstrates that the tune
shift ∆ν = ν − ν0 increases with increasing emittance.
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Figure 4.16: Amplitude scans of ν and Plim at 805 GeV with [Qy] ≈ 0.2725 (top left), 0.2775 (top right) and 0.2825
(bottom left). For comparison the bottom right plot shows the averaged rotation vector and normalised rotation angle
and their spreads.

Figure 4.16 shows ν and Plim as functions of the orbital action Jy indicated by the normalised
emittance enclosed in the invariant ellipse. Note that 81 π mm mrad correspond to approximately
4.5 σ. The reference momentum was taken to be 805 GeV and the fractional vertical tune [Qy] was
chosen to be approximately 0.2725 (top left), 0.2775 (top right) and 0.2825 (bottom left). In all three
plots we find on the design orbit Plim(Jy = 0) = ∥ 1

2π

∫
n̂0 dΨy∥ = 1 and ν(Jy = 0) = ν0 = 1/2.

Note (again) that ν is taken from the left and Plim from the right ordinate. For comparison also the
phase averages and the spreads of the rotation vector of the spin OTM r̂ ≡ êR and the normalised
rotation angle µR are shown in 4.16 (bottom right). This plot is identical for all three [Qy]: 0.2725,
0.2775 and 0.2825. When increasing the enclosed normalised emittance the amplitude dependent
spin tune deviates more and more from ν0 while Plim smoothly decreases until ν approaches the first
resonance condition for the chosen orbital tune. For [Qy] ≈ 0.2725 (top left) the first resonance is
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field can be calculated using the numerical technique ‘stroboscopic averaging’ of the
computer code SPRINT [5] b.

Examples of the invariant spin field for a HERA proton optic with a suitable
snake layout are shown in the figures. In this simulation the protons only execute
integrable vertical betatron motion. Each figure shows the locus, on the surface of a
sphere, of the tip of the n̂ vector ‘attached’ to its phase space ellipse at an interaction
point on the ring where n̂0 is vertical. The parameters are shown in the captions. An
emittance of 4π mm mrad corresponds to ‘1-σ’. The energy 800 GeV lies well below
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Figure 1: The n̂–vector for the 4π mm mrad ellipse at 800 GeV (left) and 802 GeV (right).
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Figure 2: The n̂–vector for the 64π mm mrad ellipse at 800 GeV (left) and 802 GeV (right).

a resonance structure that survives even in the presence of snakes and 802 GeV is just
below this structure. For particles at 1-σ the spin field is well aligned at 800 GeV .
At 4-σ it has opened well beyond 90 degrees at some phases. At 802 GeV the 1-σ
locus deviates by more than 30 degrees from n̂0 at some orbital phases and at 4-σ
the field is almost isotropic! In all four cases the locii are closed as required by the
periodicity condition n̂(u⃗; s) = n̂(u⃗; s + C) (Article I).

A distribution of spins aligned along an invariant spin field is the ideal starting
point for long term tracking studies of spin stability at fixed energy since deviations
from equilibrium are then easy to discern.

bThe new version of the SODOM algorithm [6] gives equivalent results. See Article I.
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How You Integrate the Quadrupole Affects the Tune
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Symplectic integration made easy: (i) Split the Hamiltonian into solvable parts.
(ii) Construct a symmetric mapping of the parts. Voilà: a second-order symplectic map!
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This splitting does not require fitting the quad strengths. 
Moreover, it yields correct tunes for off-energy particles.

How You Integrate the Quadrupole Affects the Tune
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Use Quaternions for Integrating the Spin Motion
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. . ...

~W0 ~W1 ~W2 ~W3 ~W4

h

Q(h) = q( 1
2 h ~W4) q(h ~W3) q(h ~W2) q(h ~W1) q( 1

2 h ~W0)
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Use Quaternions for Integrating the Spin Motion (cont.)
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. . ...

~W0 ~W2 ~W4

2h

Q(h) = q( 1
2 h ~W4) q(h ~W3) q(h ~W2) q(h ~W1) q( 1

2 h ~W0)

Q(2h) = q(h ~W4) q(2h ~W2) q(h ~W0)
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Use Quaternions for Integrating the Spin Motion (cont.)
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. . ...

~W0 ~W4

4h

Q(h) = q( 1
2 h ~W4) q(h ~W3) q(h ~W2) q(h ~W1) q( 1

2 h ~W0)

Q(2h) = q(h ~W4) q(2h ~W2) q(h ~W0)

Q(4h) = q(2h ~W4) q(2h ~W0)
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Use Romberg Quadratures to Accelerate the Convergence
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. . ...

~W0 ~W1 ~W2 ~W3 ~W4

h
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z1

S⃗1

z2 = Mz1

S⃗2 = R(z1) · S⃗1

one turnmap
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Use Stroboscopic (Ergodic) Averaging to Compute the ISF
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z0, q0

z1, q1

z2, q2

z3, q3
z4, q4

zk, qk

average all the spins

tracked back to z0

R−1
qk

· ŷ

Stroboscopic averaging yields a
non-perturbative computation.
K. Heinemann and G.H. Hoffstätter, “Tracking algorithm for the stable spin polarization field 
in storage rings using stroboscopic averaging”. Phys. Rev. E 54(4):4240–4255, Oct. 1996.

but ...
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Convergence can be Slow at Large Angles
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It should be possible to speed this up dramatically by averaging over a small number 
of turns and then using that result as a starting point for further computation. See 
Dave Sagan's BMad.
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The goal of spin tracking is insight.

The accuracy of orbital tracking affects the accuracy of spin tracking.

Avoid any scheme that requires you to refit the quad strengths.

Symplectic tracking is important even for electrons.

The invariant spin field tells us best we can achieve.
Look at the ISF first to understand where you want to end up.
Then investigate acceleration.
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Thank you!
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