

Engineering Status

Tim Michalski

Agenda

- Superconducting (SC) Magnet R&D
- Beamline Elements Affecting Impedance
- Beamline / Site Layout
- Next Steps

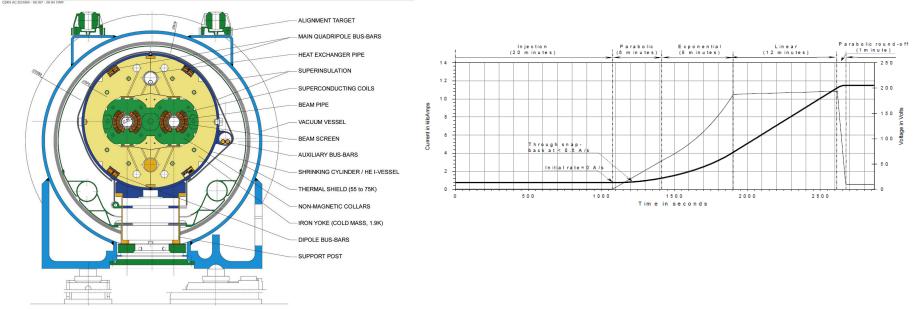
2

SC Magnet R&D

- 6 SC Magnet R&D Proposals
 - MAG1: Superferric 3T, Fast Ramping, Short Prototype
 - MAG2: Alternate SC 3T Fast Ramping Magnets
 - MAG3: Full Length Prototype with Cryostat
 - MAG4: IR, Compact, Large Aperture, High Radiation Magnets
 - MAG5: Cooler Solenoids
 - MAG6: Spin Rotator Solenoids

• More detail in the Magnet R&D presentation.

SC Magnet R&D

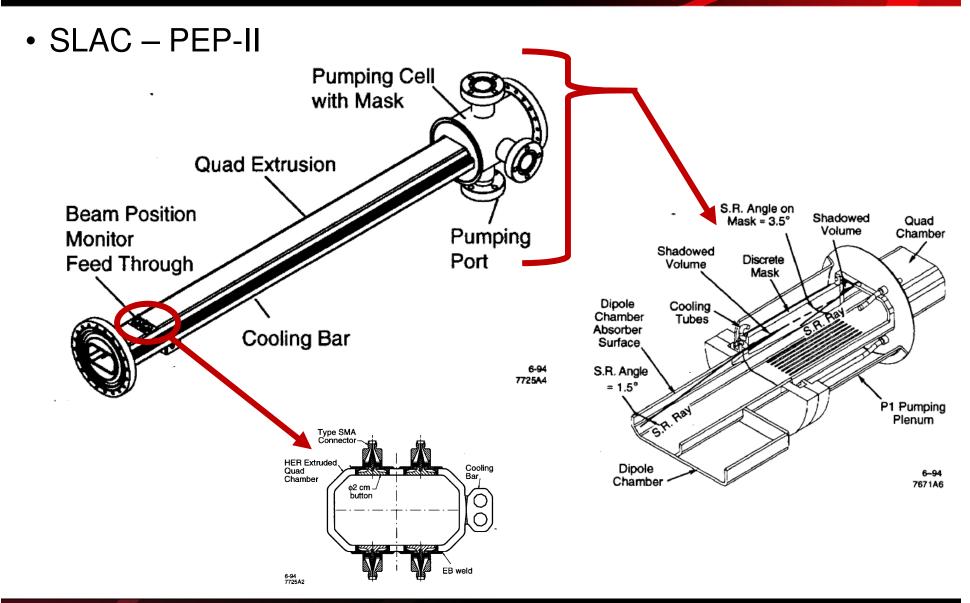

- 4 Activities SC Magnet
 - Documenting SC magnet design parameters
 - Developing list of supporting analyses required for the 1.2m, 3T, fast ramping CICC model dipole with TAMU
 - Developing a test plan and supporting diagnostics for testing 1.2m, 3T, fast ramping CICC model dipole
 - Developing a plan for IR Magnet Development

A^JSA

LHC Dipole Design – Adapting to JLEIC

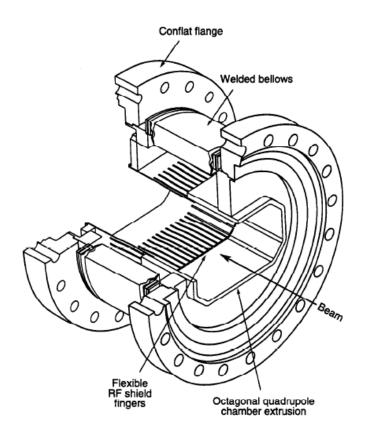
- R&D Review Committee recommendation, "magnet design can follow LHC magnet design" for 6T JLEIC – required to support 200 GeV Ion Collider Ring
- Not a "drop in" solution
 - LHC is 8.4T @ 1.9K, JLEIC is 6T @ 4.5K
 - Aperture: LHC 2 x 56mm, JLEIC 10cm x 6cm
 - Ramp Rate: LHC is .008 T/sec, JLEIC is .05 T/sec

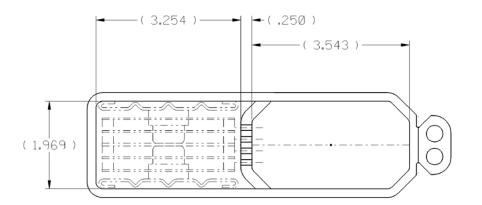
LHC DIPOLE : STANDARD CROSS-SECTION



• Discontinuities in the beamline internal surface creates an impedance which leads to beam instabilities (R. Li presentation)

	Electron Collider Ring	Ion Collider Ring	
Flanges (Pairs)	1215	234	
BPMs	405	254	
Vacuum ports	480	92	
Bellows	480	559	
Vacuum Valves	23	14	
Tapers / Transitions	6	6	
	470k holes -		
Slots in DIP screen	holes are 3.2mm diameter		
	· · · · · · · · ·		
Crab Cavities	4	12	
RF/SRF Cavities	33	41	
RF/SRF Bellows	2	34	
RF/SRF Valves	70	24	
Length of Vac Chamber	2,154 m	2,154 m	
Vac Chamber Mat'l	Copper - arcs Stainless Steel - straights	Stainless Steel	





• SLAC – PEP-II

LER Vacuum Valve

Table 6. The main contribution to the inductive impedance of PEP-II			
		L (nH)	$k_l~({ m V/pC})$
	Dipole screens	0.10	
	BPM	11.	0.8
	Arc bellow module	13.5	1.41
	Collimators	18.9	0.24
	Pump slots	0.8	
	Flange/gap rings	0.47	0.03
	Tapers oct/round	3.6	0.06
	IR chamber	5.0	0.12
	Feedback kickers	29.8	0.66
	Injection port	0.17	0.004
	Abort dump port	0.23	0.005
Total		83.3	3.4

SJSA

Beamline / Site Layouts

Magnets, Kickers - Summary

Element	Туре	Electron Complex	Ion Complex
Length of Beamline		2,439 m	2,629 m
	-	-	
Dipole Magnets	Normal-Conducting	270	12
	Superconducting	-	325
Quadrupole	Normal-Conducting	488	15
Magnets	Superconducting	7	292
Caytunala Magnata	Normal-Conducting	212	-
Sextupole Magnets	Superconducting	-	156
Correctore Magnete	Normal-Conducting	405	-
Correctors Magnets	Superconducting	-	129
Solenoids Magnets	Superconducting	8	2
Kickers (RF)	Normal-Conducting	2	3

Accelerating and Bunching – Summary

			#	Cavities per unit	Fwd Pwr per cavity (kW)
Electron	Acceleration		33**	1	500**
Collider Ring	Crab Cavities		2	2	13
Booster	Acceleration		2	1	50
Ion Collider Ring	Bunch Ctrl (normal-cond)		7	1	100
	Acceleration		7	5	75
	Crab Cavities		2	6	13
Electron	DC Cooler (Booster)		1	4	500
Cooling	Bunched Beam (Ion	Injector	1	2	50
	Collider Ring)	ERL	1	6	50

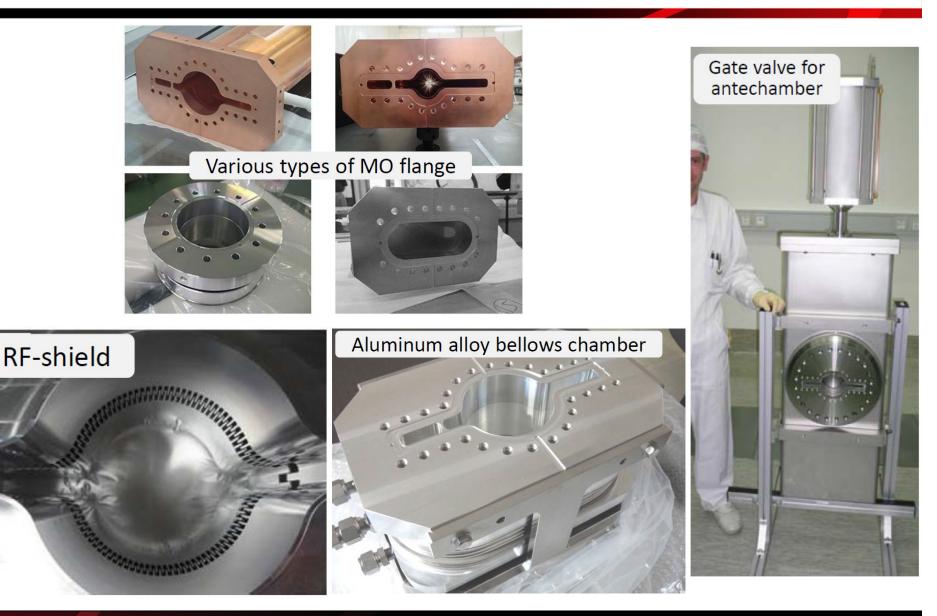
** - PEP-II Cavities and HPAs

Site Layout

Defining Global/Local Coordinate Systems for Machine Segments

Machine Segment Name	Local Coordinate System Origin	Global Coordinate System Origin
maonine orginent name	(m,m,m)	(m,m,m)
CEBAF (Electron Injector)	0,0,0	0,0,0
Electron Collider Ring	0,0,0	393.75,?, 102.08
Ion Collider Ring	0,0,0	393.75,?, 102.08
Ion Booster Ring	0,0,0	339.58,?,80.42
Ion Injector/Linac		
START POINT	0,0,0	228.75,?,157.92
END POINT	81.67,?,(44.38)	310.42,?,113.54
Ion Linac / Xfer Line		
START POINT	0,0,0	310.42,?,113.54
END POINT	29.17,?,(33.13)	339.58,?,80.42
Electron Transfer Line		
START POINT	0,0,0	80.6,?,180.18
END POINT	219.79,?,457.29	219.79,?, 457.29
Ion Transfer Line		
START POINT	0,0,0	316.67,?,93.75
END POINT	77.08,?,8.33	393.75,?, 102.08

Next Steps


- Staff activities supporting SC Magnet R&D
 - 3T S-F Dipole Analysis, Build, Test
 - 6T Dipole Study and Concept Design
 - IR Magnets
 - Magnet Parameters Defined
- Impedance Analysis Support
 - Next level of detail on element definition, counts
- Site Design Support
 - Update tunnel cross sections
 - Support site vibration study
- Beamline Layouts ensure fit of design elements

Backup Slides

SuperKEKB Low Impedance Elements

