# Estimations of Collective Instabilities for JLEIC

Rui Li

JLEIC Collaboration Meeting 4-3-2016

## **Collective Effects in JLEIC**

| Electr                                                                  | on Ring                                                          | Ion Rings                                    | Electron Cooler                                                                  |
|-------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|
| <ul> <li>Incoherent:</li> <li>Coherent:</li> <li>Scattering:</li> </ul> | Laslett tune shift<br>Single-bunch Ins<br>Coupled-bunch I<br>IBS | , emittance growth<br>tability<br>nstability | <ul> <li>Space charge</li> <li>CSR</li> <li>BBU</li> <li>Ion trapping</li> </ul> |
| <ul> <li>Heat load</li> <li>Feedback</li> </ul>                         | Touschek scatter<br>Residual gas scat                            | ing<br>tering                                |                                                                                  |
| <ul> <li>Two-stream</li> <li>Ion eff</li> </ul>                         | effects: Beam-I<br>ects                                          | Beam<br>E-cloud effects                      |                                                                                  |

#### Wakefield/Impedance Effects on Collective Instabilities

- Harmful effects of wakefield/impedance on machine performance
  - Longitudinal and transverse tune shift
  - Heat load (local)
  - Phase space degradation: emittance growth, increase of energy spread, etc
  - Collective instabilities (global)





# Outline

- Status of impedance estimation
- JLEIC Parameters
- Longitudinal single-bunch instability
- Transverse single-bunch instability
- Longitudinal coupled-bunch instability
- Transverse coupled-bunch instability
- Summary

# **Status of Impedance Estimation**

### Impedance Budget and Instability Assessment



# Impedance Studies for JLEIC

- We are at early stage of both engineer design and impedance budget studies
  - The estimation will be further improved as the engineer design is refined
- e-ring
  - Start with PEPII lattice and impedance
  - Compare JLEIC from PEPII: circumference, number of FODO cells, tapers needed, RF cavities, etc
  - Start building our inventory or database based on best possible approximations
  - Update/Iterate when new information is available
- Ion-ring
  - Start from RHIC or LHC and its impedance (but short bunches for JLEIC),
  - Compare JLEIC with RHIC: circumference, number of FODO cells, tapers needed, RF cavities, cold section, warm section, beam pipe material, (for short bunches, feedback and bpm could be very different from those used in RHIC... bunch formation...)
  - Start building our inventory or database based on best possible approximations
  - Update/Iterate when new information is available

#### Counts of Impedance-Generating Elements (JLEIC vs. PEPII)

| IMPEDANCE DRIVERS     | <b>PEPII-HER</b> |                                                 |                 |
|-----------------------|------------------|-------------------------------------------------|-----------------|
|                       | #/1/12 of        |                                                 |                 |
|                       | PEP-II           | JLEIC E-Ring                                    | JLEIC I-Ring    |
| Flanges (Pairs)       | 60               | 1215                                            | 234             |
| BPMs                  | 12               | 405                                             | TBD             |
| Vacuum ports          | 24               | 480                                             | 92              |
| Bellows               | 24               | 480                                             | 559             |
| Vacuum Valves         | 1                | 23                                              | 14              |
| Tapers / Transitions  | 1                | 6                                               | 6               |
|                       |                  | 470k holes -<br>holes are<br>3.2mm              |                 |
| Slots of DIP screen   | 3000             | diameter                                        |                 |
| Crab Cavities         |                  | 2                                               | 8               |
| RF/SRF Cavities       |                  | 32                                              | 40              |
| RF/SRF Bellows        |                  | 0                                               | 60              |
| RF/SRF Valves         |                  | 68                                              | 24              |
| Length of Vac Chamber |                  | 2154                                            | 2154            |
| Vac Chamber Mat'l     |                  | Copper - arcs<br>Stainless Steel -<br>straights | Stainless Steel |

(Courtesy to Tim Michalski)

## **Broadband Impedance for JLEIC e-Ring**

|                        | Major Z <sub>//</sub><br>contributors | PEP-II<br>counts  | L (nH)            | JLEIC<br>counts | L (nH)                         | KEKB<br>L (nH) | SuperKEKB<br>L (nH)                  |
|------------------------|---------------------------------------|-------------------|-------------------|-----------------|--------------------------------|----------------|--------------------------------------|
|                        | BPM                                   | 290               | 11                | 405             | 15.4                           | 0.8            | 0.6                                  |
|                        | Arc Bellows                           | 198               | 13.5              | 480             | 32.7                           | 6.6            | 5.1                                  |
|                        | Tapers                                | 12                | 3.6               | 6               | 1.8                            | 1.3            | 0.1                                  |
|                        | Flanges                               | 582               | 0.47              | 1215            | 0.98                           | 18.5           | 4.1                                  |
|                        | collimators                           | 12                | 18.9              | 12              | 18.9                           | 11.9           | 13.0                                 |
|                        | Feedback<br>kicker                    | 2                 | 29.8              | 2               | 29.8                           | 0.0            | 0.0                                  |
|                        | IR chamber                            |                   | 5.0               |                 | 5.0                            | 0.6            | 0.6                                  |
|                        |                                       |                   |                   |                 |                                |                |                                      |
|                        | Total L (nH)                          | (                 | 83.3              |                 | 105.6                          | 60.1           | 33.5                                 |
| (S. Heifet<br>SKAC-AP- | s et. al,<br>99)                      | $Z_{\parallel /}$ | $n \approx 0.07 $ | 2 7             | $Z_{\parallel}/n \approx 0.09$ | Ω ([<br>W      | D. Zhou, TWIICE 2<br>/orkshop, 2016) |

## **Goals for Impedance Studies**

- Work together with RF, diagnostic, vacuum system teams to
  - obtain accurate impedance spectrum for the whole machine (as done in SuperKEKB)
  - get machine impedance within instability threshold



(D. Zhou, TWIICE 2 Workshop, 2016)

# JLEIC Parameters for the Collider Rings

# **JLEIC Baseline Parameters**

| CM energy                       | GeV                              | 21.9    |                    | 44.7     |                    | 63.3     |                    |
|---------------------------------|----------------------------------|---------|--------------------|----------|--------------------|----------|--------------------|
|                                 |                                  | ()(     | ow)                | (medium) |                    | (high)   |                    |
|                                 |                                  | р       | е                  | р        | е                  | р        | е                  |
| Beam energy                     | GeV                              | 40      | 3                  | 100      | 5                  | 100      | 10                 |
| Collision frequency             | MHz                              | 4       | 76                 | 47       | 76                 | 476/4    | =119               |
| Particles per bunch             | <b>10</b> <sup>10</sup>          | 0.98    | 3.7                | 0.98     | 3.7                | 3.9      | 3.7                |
| Beam current                    | А                                | 0.75    | 2.8                | 0.75     | 2.8                | 0.75     | 0.71               |
| Polarization                    | %                                | 80      | 80                 | 80       | 80                 | 80       | 75                 |
| Bunch length, RMS               | cm                               | 3       | 1                  | 1        | 1                  | 2.2      | 1                  |
| Norm. emitt., hor./vert.        | μm                               | 0.3/0.3 | 24/24              | 0.5/0.1  | 54/10.8            | 0.9/0.18 | 432/86.4           |
| Horizontal & vertical $\beta^*$ | cm                               | 8/8     | 13.5/13.5          | 6/1.2    | 5.1/1              | 10.5/2.1 | 4/0.8              |
| Vert. beam-beam param.          |                                  | 0.015   | 0.092              | 0.015    | 0.068              | 0.008    | 0.034              |
| Laslett tune-shift              |                                  | 0.06    | 7x10 <sup>-4</sup> | 0.055    | 6x10 <sup>-4</sup> | 0.056    | 7x10 <sup>-5</sup> |
| Detector space, up/down         | m                                | 3.6/7   | 3.2/3              | 3.6/7    | 3.2/3              | 3.6/7    | 3.2/3              |
| Hourglass(HG) reduction         |                                  | 1       |                    | 0.87     |                    | 0.75     |                    |
| Luminosity/IP, w/HG, 1033       | cm <sup>-2</sup> s <sup>-1</sup> | 2       | 2.5                | 21.4     |                    | 5.9      |                    |

"JLEIC Main Parameters with Strong Electron Cooling", Y. Zhang (2017)

## Parameters for the Electron Ring

| Electron Ring                   | 3 GeV     | 5 <u>GeV</u>     | 10 <u>GeV</u> |
|---------------------------------|-----------|------------------|---------------|
| Circumference [m]               |           | 2181.39          |               |
| Pipe radius [cm]                |           | 3                |               |
| Pipe wall material              |           | Cu               |               |
| Momentum compaction             |           | 1.09e-03         |               |
| Betatron tune (x, y)            |           | 52.7475, 52.7685 |               |
| Average beta function (x, y)    |           | 11.95, 13.15     |               |
| Number of bunches in ring       | 3464      | 3464             | 866           |
| Momentum spread                 | 2.78e-04  | 4.64e-04         | 9.28e-04      |
| Bunch length [cm]               | 1.2       | 1.2              | 1.4           |
| SR energy loss [MeVturn]        | 0.116     | 0.898            | 14.37         |
| Transverse emittance [nm-rad]   | 2.0, 0.40 | 5.55, 1.11       | 22.2, 4.44    |
| Transverse damping rate [1/s]   | 2.67      | 12.35            | 98.83         |
| Longitudinal damping rate [1/s] | 5.33      | 24.71            | 197.65        |
| RF Voltage [MV]                 | 0.41      | 2.02             | 17.87         |
| # of cavities                   | 1         | 2                | 15            |

(Courtesy to Fanglei Lin)

## Parameters for the Proton Ring

| Ion Collider Ring             | 40 GeV<br>(E <sub>CM</sub> =21.9 <u>GeV</u> ) | 10 GeV<br>(E <sub>CM</sub> =44.7 GeV) | 100 <u>GeV</u><br>(Е <sub>см</sub> =63.3 <u>GeV</u> ) |
|-------------------------------|-----------------------------------------------|---------------------------------------|-------------------------------------------------------|
| Circumference[m]              |                                               | 2153.9                                |                                                       |
| Pipe radius [cm]              |                                               | 4                                     |                                                       |
| Pipe wall material            |                                               | Stainless Steel                       |                                                       |
| Momentum compaction           |                                               | 6.22e-04                              |                                                       |
| Number of bunches in ring     |                                               | 3254                                  |                                                       |
| Momentum spread               |                                               | 3.0e-04                               |                                                       |
| Bunch length [cm]             |                                               | 1.2                                   |                                                       |
| Average beta function [m]     |                                               | 48, 64                                |                                                       |
| Transverse emittance [nm-rad] |                                               | 4.70, 0.94                            |                                                       |
| RF voltage [MV]               |                                               | 42.6                                  |                                                       |
| # of cavities                 |                                               | 34                                    |                                                       |
| Betatron tune (hor., vert.)   |                                               | 24.22, 23.16                          |                                                       |
| Tune spread                   |                                               | 0.003                                 |                                                       |
| Chromaticity                  |                                               | 1                                     |                                                       |

(Courtesy to Vasiliy Morozov)

• Longitudinal Microwave Instability



Observation at PSR of Los Alamos

Longitudinal Mode Coupling Instability





• Observation at APS (2001)



• Features: not fatal instability

• Longitudinal Microwave Instability Threshold

$$\left|\frac{Z_{\parallel}(n)}{n}\right|_{\text{eff,th}} = \frac{2\pi |\eta| (E/e)\sigma_{\delta}^{2}}{I_{peak}}$$

|                               |                                                               | PEP-II (LER)       | JLEIC Electron Ring |                      |      |  |
|-------------------------------|---------------------------------------------------------------|--------------------|---------------------|----------------------|------|--|
|                               | E (GeV)                                                       | 3.1                | 3                   | 5                    | 10   |  |
|                               | $I_p(\mathbf{A})$                                             | 113                | 59.0                | 62.35                | 50.6 |  |
|                               | $\eta \ (10^{-3})$                                            | 1.31               | 1.09                | 1.09                 | 1.09 |  |
|                               | $\sigma_{\delta}$ (10 <sup>-4</sup> )                         | 8.0                | 2.78                | 4.55                 | 9.28 |  |
|                               | $Z_{\parallel}/n\Big _{\mathrm{eff,th}}[\Omega]$              | 0.145              | 0.027               | 0.125                | 1.16 |  |
| PE<br>im<br>Z <sub>II /</sub> | P-II machine<br>pedance<br>$n \Big _{eff} \approx 0.1 \Omega$ | <b>L</b><br>Stable | Unstable!           | Marginally<br>Stable |      |  |

• Longitudinal Microwave Instability Threshold



### Change of e-Beam Emittance: Bending Radius



#### Impedance issues: MWI: LER

#### **Concern of MWI in LER:**

- Unknown impedance source in KEKB LER
- Lum. inversely proportional to bunch length for SuperKEKB

(D. Zhou, "Accelerator Physics

Challenges at SUPERKEKB<sup>"</sup>, 2015)



• Longitudinal Single-Bunch Instability Threshold

|                            |                                                          | JLEIC                  | <b>RHIC:</b> injection | n acceleratio                                 | n store                                                                                        |
|----------------------------|----------------------------------------------------------|------------------------|------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|
|                            | E (GeV)                                                  | 100                    | 29                     | 250                                           | 250                                                                                            |
|                            | $I_p(\mathbf{A})$                                        | 15.6                   | 5.4                    | 5.4                                           | 26.6                                                                                           |
|                            | $\eta (10^{-3})$                                         | 6.22                   | 0.72                   | 1.9                                           | 1.9                                                                                            |
|                            | $\sigma_{\delta}$ (10 <sup>-4</sup> )                    | 3.0                    | 4.66                   | 0.54                                          | 2.65                                                                                           |
|                            | $\left Z_{\parallel}/n\right _{\mathrm{eff.th}}[\Omega]$ | 22.5                   | 5.2                    | 1.6                                           | 7.9                                                                                            |
|                            | • • • • • • •                                            | Stable!                | P                      | 20                                            | (RH                                                                                            |
| protor                     | E = 250                                                  | (GeV)                  |                        | rebucketing                                   | store                                                                                          |
| $N_b = 10$ $(\gamma_t = 2$ | 0 <sup>11</sup> 2.89)                                    |                        | deration               | (20 ms) – – – – – – – – – – – – – – – – – – – | → (10 hrs)<br>3S                                                                               |
|                            | 29 in                                                    | jection acc<br>30 sec) | 160 secti R            | RHIC Machine mpedance:                        | $\left  Z_{\parallel} / n \right _{\text{eff}} = 0.5 \ \Omega$<br>(for $f > 250 \text{ MHz}$ ) |
|                            |                                                          | ,                      |                        |                                               |                                                                                                |

### Comments

- At lower energies, the JLEIC e-beam is vulnerable to the longitudinal single bunch instability
- Comparison to the PEP-II LER case shows that the low momentum spread from JLEIC dipole configuration is not enough to provide necessary Landau damping to suppress the instability
- Accurate assessment of LSBI requires effective impedance that depends on the actual longitudinal bunch distribution, including PWD effect for e-beam and strong cooling effect for the ion beam
- Complete studies need to use full impedance information and tracking of particle dynamics

# **Transverse Single Bunch Instability**

# **Transverse Single Bunch Instability**

• Transverse Fast Blowup Instability

-coasting beam approximation

- Transverse Mode Coupling Instability
  - -Strong head-tail instability -Head-tail instability
  - Feature: fatal beam loss





Growth time faster than synchrotron period

# Transverse Single Bunch Instability (e-Ring)

• Transverse Mode Coupling Threshold

$$|Z_{\perp}(n)|_{\text{eff,th}} \approx \frac{16\sqrt{2}\pi}{3} \frac{(E/e)v_s}{\langle \beta_{\perp} \rangle I_{peak}}$$

#### (should include bunch lengthening effects)

|                                                                 | PEP-II (LER) | JLEIC Electron Ring |       |      |  |  |
|-----------------------------------------------------------------|--------------|---------------------|-------|------|--|--|
| E (GeV)                                                         | 3.1          | 3                   | 5     | 10   |  |  |
| $I_p(\mathbf{A})$                                               | 113          | 59.0                | 62.35 | 50.6 |  |  |
| $V_{\rm s}$ (10 <sup>-2</sup> )                                 | 3.7          | 0.88                | 1.46  | 2.51 |  |  |
| $\langle \beta_{\perp} \rangle$                                 | 20           | 13                  | 13    | 13   |  |  |
| $ Z_{\perp} _{\rm eff,th} [M\Omega / m]$                        | n] 1.2       | 0.81                | 2.25  | 9.0  |  |  |
| $\frac{PEPII}{ Z_{\perp}  = 0.5 \mathrm{M}\Omega / \mathrm{I}}$ | m Stable     | <b>Stable</b>       |       |      |  |  |

## In PEPII Design Report



The instability sets in when m=0 and m=-1 Frequencies merge.

Threshold calculated by MOSES [Chin]  $Z_{\perp} = 1.3 \text{ M}\Omega/\text{m}$   $I_b == 6.5 \text{ mA (HER)}$  $I_b = 2.2 \text{ mA (LER)}$ 

Required single bunch current:  $I_b == 0.6 \text{ mA (HER)}$   $I_b = 1.3 \text{ mA (LER)}$  $\Rightarrow$  stable!

# Transverse Single Bunch Instability (p-Ring)

• Transverse Mode Coupling Threshold

|                                                                   | RHIC (p-store) | JLEIC ion Ring |  |  |  |
|-------------------------------------------------------------------|----------------|----------------|--|--|--|
| E (GeV)                                                           | 250            | 100            |  |  |  |
| $I_p(\mathbf{A})$                                                 | 26.6           | 15.6           |  |  |  |
| $V_{s}$ (10 <sup>-2</sup> )                                       | 0.0043         | 0.053          |  |  |  |
| $\left$                                                           | 28             | 64             |  |  |  |
| $\left  Z_{\perp} \right _{\rm eff,th} \left[ M\Omega /m \right]$ | 16.9           | 63             |  |  |  |
| Stable                                                            |                |                |  |  |  |
| RHIC measured transverse BB impedance:                            |                |                |  |  |  |
| $Z_{\perp}^{BB} \approx 3-5 \text{ M}\Omega/\text{m}$             |                |                |  |  |  |

"TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC", S. Y. Zhang, EPAC2002



Figure 5: Comparing HEADTAIL (white dots) and MOSES (red lines). The transverse modes "0", "-1", "-2" and "-3" behaviour is plotted as a function of bunch intensity. The coherent motion as simulated with HEADTAIL was post-processed with SUSSIX and displayed using white dots, whose size and brightness are both non-linear functions of their spectral amplitude (bigger brighter dots have a higher amplitude than smaller darker dots).

"TRANSVERSE MODE COUPLING IN STABILITY IN THE SPS: HEADTAIL SIMULATIONS AND MOSES CALCULATIONS"

(B. Salvant, Beam'07)

- Example of betatron sideband and and mode coupling from particle tracking for SPS
- Agree with MOSES results
- We need to study this after more impedance information are figured out

# **Coupled Bunch Instabilities in JLEIC**

- Here the instability estimations are done by ZAP (Courtesy to Ji Qiang)
- These estimations assume even filling, which tends to over-estimate the instability growth rate
- The instability grows much faster than the natural damping time, so we rely on fast feedback to control the instability
- Approach: use RF HOM impedance and designed I<sub>ave</sub> to calculate LCBI or TCBI growth time, and compare with damping time of bunch-by-bunch feedback system

### The State of Art for LBF System



WEOBM02 EPAC June 2008

#### Where we started, Where we finished

| Year/run | LER stations | LER cay | vities HER stati | ons HER cavitie | s IH | ER ILI | ER L   |
|----------|--------------|---------|------------------|-----------------|------|--------|--------|
| 1998     | 2            | 4       | 4(+1 parked)     | 16(+4 parked)   | 0.6A | 1.0A   | 1.2E33 |
| Run 1    | 2            | 4       | 5                | 20              | 0.9  | 1.5    | 3.0E33 |
| Run 2    | 3            | 6       | 5                | 20              | 1.0  | 1.7    | 4.4E33 |
| Run 3    | 3            | 6       | 6                | 22              | 1.1  | 1.9    | 6.3E33 |
| Run 4    | 3            | 6       | 8                | 26              | 1.5  | 2.5    | 9.0E33 |
| Run 5a   | 4            | 8       | 9                | 26              | 1.7  | 3.0    | 1.0E34 |
| Run 5b   | 4            | 8       | 9                | 26              | 1.9  | 2.9    | 1.2E34 |
| Run 6    | 4            | 8       | 11               | 28              | 1.9  | 3.0    | 1.2E34 |
| Run 7    | 4            | 8       | 11               | 28              | 2.1A | 3.2A   | 1.2E34 |

HER reconfigured 4 cavity -> two cavity station in Run 3, subsequently added 2 cavity stations The operating configuration, gap voltages, tunes, etc. were constantly changing

HER current - 2x design LER Current -1.8x design Luminosity 4X design

| LOM Growth rates                                                                                                    | HER 1.2 ms-1 (LER 3.0 ms-) (design - simulation was damped!) | $\tau_g \approx 0.3 \text{ ms}$ |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|--|--|--|--|
| HOM growth rates                                                                                                    | HER 3x design LER growth rates 0.45 ms- (5.6x design)        | $\tau_g \approx 2.2 \text{ ms}$ |  |  |  |  |
| The PEP-II collider holds the record for stored charge in a storage ring (3.213 A at 3 GeV).                        |                                                              |                                 |  |  |  |  |
| Were we successful in the feedback and LLRF areas because it was easy and we overdesigned/<br>overestimated things? |                                                              |                                 |  |  |  |  |

### **PEP-II Cavity Impedance for JLEIC e-Ring**



Figure 1. Calculated longitudinal impedance spectrum plus worst case estimates of modes measured in the first PEP-II cavity.



Figure 2. Calculated transverse spectrum plus estimated transverse impedance of modes measured in the first PEP-II cavity.

#### "PEP-II RF cavity revisited", R. Rimmer et. al, (1999)

### Impedance for PEP-II RF Cavities

#### Longitudinal modes

| f [MHz] | Rs [Ohm] | Q     |
|---------|----------|-------|
| 475     | 3.81e06  | 32469 |
| 758     | 810      | 18    |
| 1009    | 55       | 128   |
| 1283    | 1740     | 259   |
| 1295    | 2290     | 222   |
| 1595    | 730      | 300   |
| 1710    | 140      | 320   |
| 1820    | 70       | 543   |
| 1898    | 440      | 2588  |
| 2121    | 620      | 338   |
| 2160    | 6        | 119   |
| 2265    | 130      | 1975  |

#### Transverse modes

| f [MHz] | Rs<br>[Kohm/m] | Q    |
|---------|----------------|------|
| 792     | 42.0           | 115  |
| 1063    | 38.0           | 27   |
| 1133    | 1.82           | 54   |
| 1202    | 12.2           | 871  |
| 1327    | 76.7           | 611  |
| 1420    | 126.9          | 1138 |
| 1542    | 0.89           | 92   |
| 1595    | 1.39           | 145  |
| 1676    | 64.5           | 783  |
| 1749    | 2.31           | 1317 |

"PEP-II RF cavity revisited", R. Rimmer et. al, (1999)

(Courtesy to Shaoheng Wang)

## Longitudinal Coupled-Bunch Growth Time

#### **JLEIC Electron-ring**

| E<br>[GeV]        | 3     | 5    | 10    |
|-------------------|-------|------|-------|
| $\tau_{a=1}$ [ms] | 6.1   | 8.5  | 16    |
| $	au_{a=2}$ [ms]  | 118   | 163  | 199   |
| $	au_{E}$ [ms]    | 187.4 | 40.5 | 5.1   |
| $V_{RF}$ [MV]     | 0.40  | 2.02 | 17.87 |
| Cavity<br>Number  | 1     | 2    | 15    |

#### **PEP-II LER**

Table 4-32. Longitudinal coupled-bunch growth times for the PEP-II LER (3.1 GeV;  $\tau_E = 19.8$  ms) at a beam current of 2.14 A.

| (A) Undamped           |         |
|------------------------|---------|
| $	au_{a=1}$            | 0.03 ms |
| $	au_{a=2}$            | 1 ms    |
| (B) Damped to $Q = 70$ |         |
| $	au_{a=1}$            | 3.8 ms  |
| $	au_{a=2}$            | 180 ms  |

(use HOM modes only, and assume deQ factor=1)

## Transverse Coupled-Bunch Growth Time

#### **JLEIC Electron-ring**

| E<br>[GeV]       | 3    | 5    | 10    |
|------------------|------|------|-------|
| $	au_{a=0}$ [ms] | 1.6  | 2.7  | 64    |
| $	au_{a=1}$ [ms] | 25   | 39   | 58    |
| $	au_y$ [ms]     | 375  | 81   | 10.1  |
| $V_{RF}$ [MV]    | 0.40 | 2.02 | 17.87 |
| Cavity<br>Number | 1    | 2    | 15    |

#### **PEP-II LER**

Table 4-34. Transverse coupled-bunch growth times for the PEP-II LER (3.1 GeV;  $\tau_x = 40.3$  ms) at a beam current of 2.14 A.

| (A) Undamped           |         |
|------------------------|---------|
| $	au_{a=0}$            | 0.1 ms  |
| $	au_{a=1}$            | 1.4 ms  |
| (B) Damped to $Q = 70$ |         |
| $	au_{a=0}$            | 1.1 ms  |
| $\tau_{a=1}$           | 21.4 ms |

(for deQ factor=1) (assume  $\xi$ =0.1,  $\Delta v_{\beta}$ =3e-04)

## **Two-Cell Cavities for the JLEIC Ion Ring**

• JLEIC ion ring cavities likely require less severe damping than the JLEIC electron ring, so consider 2-cell cavities

rection direction



Two-cell 952.6 MHz cavity

#### (Courtesy to Frank Marhauser)

#### Monopole Impedance Spectrum



#### Dipole Impedance Spectrum

- The wakefield calculation (red line) has been set up to excite only the horizontallypolarized dipole modes (H)
- The Eigenmode simulations (green dots) includes the results for both horizontally and vertically polarized dipole modes



## Impedance for JLEIC Ion-Ring RF Cavities

#### Longitudinal modes

| f [MHz] | Rs [Ohm] | Q       |
|---------|----------|---------|
| 940.8   | 7.98e06  | 2.98e06 |
| 952.6   | 2.95e08  | 2.83e06 |
| 1771.9  | 2.25e04  | 5643.9  |
| 1814.0  | 1.00e05  | 5265.5  |
| 2894.8  | 3.33e04  | 9172.4  |
| 3079.4  | 2.23e02  | 2.65e04 |

(Courtesy to Frank Marhauser)

#### Transverse modes

| f [MHz] | Rs<br>[Kohm/m] | Q    |
|---------|----------------|------|
| 792     | 42.0           | 115  |
| 1063    | 38.0           | 27   |
| 1133    | 1.82           | 54   |
| 1202    | 12.2           | 871  |
| 1327    | 76.7           | 611  |
| 1420    | 126.9          | 1138 |
| 1542    | 0.89           | 92   |
| 1595    | 1.39           | 145  |
| 1676    | 64.5           | 783  |
| 1749    | 2.31           | 1317 |

## Longitudinal Coupled-Bunch Growth Time

#### JLEIC p-ring

| E [GeV]           | 100  |
|-------------------|------|
| $\tau_{a=1}$ [ms] | 2.2  |
| $	au_{a=2}$ [ms]  | 12   |
| $V_{RF}$ [MV]     | 42.6 |
| Cavity<br>Number  | 34   |

(use HOM modes only, assume deQ factor=10)

#### RHIC (p at injection)

| $egin{array}{c} \mathrm{HOM} \\ \mathrm{Frequency} \\ [\mathrm{MHz}] \end{array}$ | rigid<br>mode<br>A | $\operatorname{ZAP}_{	au^{-1}}_{[\operatorname{sec}^{-1}]}$ |       |
|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------|-------|
| 103                                                                               | $\frac{1}{2}$      | $\begin{array}{c} 11.3 \\ 5.0 \end{array}$                  |       |
| 192                                                                               | $\frac{1}{2}$      | $\begin{array}{c} 9.9 \\ 0.9 \end{array}$                   |       |
| 276                                                                               | $\frac{1}{2}$      | $\begin{array}{c} 2.1 \\ 0.9 \end{array}$                   |       |
| 329                                                                               | $\frac{1}{2}$      | $35 \longrightarrow$<br>13.5                                | 29 ms |
|                                                                                   |                    |                                                             |       |

## Transverse Coupled-Bunch Growth Time

| JLEIC<br>p-ring | E=100 GeV         | Chromaticity<br>0.1 |
|-----------------|-------------------|---------------------|
|                 | $\tau_{a=0}$ [ms] | 8.6                 |
|                 | $\tau_{a=1}$ [ms] | 74                  |
|                 | $V_{RF}$ [MV]     | 42.6                |
|                 | Cavity<br>Number  | 34                  |

#### RHIC (p at injection)

| χ   | $\alpha_d$ [s <sup>-1</sup> ] | $\alpha_{\max}$ [s <sup>-1</sup> ] | l        | s        |
|-----|-------------------------------|------------------------------------|----------|----------|
|     |                               | 38 ms                              |          |          |
| 0.0 | 0                             | 26.6                               | 0        | 28       |
| 1.4 | 0                             | .06                                | <b>5</b> | 28       |
| 2.8 | 0                             | .00                                | 19       | 28       |
| 0.0 | 30                            | .002                               | <b>5</b> | <b>2</b> |
| 1.4 | 30                            | .002                               | 8        | 28       |
| 2.8 | 30                            | .000                               |          |          |
|     |                               |                                    |          |          |

(for deQ factor=1) (assume  $\xi$ =0.1,  $\Delta v_{\beta}$ =3e-04)

## Summary

- Initial estimations are done for single and coupled bunch instabilities for selected cases of JLEIC collider rings at the collision configuration
- Low energy electron beam is vulnerable for longitudinal singlebunch instability
- Both electron and proton beam requires PEP-II type of fast bunchby-bunch feedback system to mitigate coupled bunch instability
- The estimations should be further improved as more details of the design are developed
- There are still many other types of instabilities and collective effects need to be assessed