

Mapping the hadronization description in the Pythia MCEG to the correlation functions of TMD factorization

3D Nucleon Tomography Workshop, March 15th – 17th 2017

LDRD project at Jefferson Lab

JSA

LDRD personnel

U.S. DEPARTMENT OF Office of Science

SA

Experimentalists **C** Theorists

+ Jake Ethier + Eric Moffat + Andrea Signori

Jefferson Lab

Section QCD factorization and TMDs

TMDs and QCD factorization

QCD

- non-abelian gauge theory
- self-consistent theory of a fundamental interaction

QCD factorization theorem

- defines quarks and gluons and their dynamics
- allows to study QCD in experiments

Broadening our understanding of QCD

- studying the QCD factorization theorem for TMDs
- studying the related transition regions
- studying TMD evolution

Upcoming TMD measurements

Urgent requirement: high-precision Monte Carlo Event Generator for TMDs

Section Monte Carlo Event Generators and Pythia

Monte Carlo Event Generator (MCEG)

Map: hard scattering, evolution through radiation, secondary scatterings, dynamical fragmentation with string model, initial-state p_T -dependence

MCEG:

- faithful representation of QCD dynamics
- based on QCD factorization and evolution equations

Algorithm of general-purpose MCEG:

- generate kinematics according to fixed-order matrix elements and a PDF
- parton shower model for resummation of soft gluons and parton-parton scatterings
- hadronize all outgoing partons including the remnants according to a model
- decay unstable hadrons

MCEG in HEP and NP

General-purpose MCEG: HERWIG, Pythia, SHERPA

DIRE parton shower

Parton shower:

numerical, fully differential solution of evolution equation by iterating parton decay

DIRE:

U.S. DEPARTMENT OF

Office of

Science

JSA

- **Fundamental goal**: compare directly to analytical approaches, e.g., the one by Collins-Soper-Sterman
- Unique verification: implemented in both Pythia and Sherpa

Section High-energy and nuclear physics

Measurements in NP and HEP

Nuclear physics (NP)

- investigation of nucleon and nuclear structure and associated dynamics
- observables of non-perturbative QCD
- non-perturbative quark-gluon dynamics parameterized in PDFs and FFs

High energy physics (HEP)

- investigation of the elemental constituents of matter and energy and their interactions
- observables of perturbative QCD
- perturbative QCD calculations up to N^NLO
- assuming the knowledge of the hadron structure / PDFs at low energies

Connection between NP and HEP

NP in HEP: non-perturbative QCD, in particular hadronization

NP

- **background suppression**, relevant for any analysis and also for the *new physics* searches
- reducing systematic uncertainties, e.g., of non-perturbative QCD models
- high-precision measurements, e.g., improving the knowledge on the coupling constants by studying the p_T spectra

HEP in NP:

 combine MCEG approaches with first principle QCD calculations to proceed with QCD studies of non-perturbative structure

Section Early state of the LDRD project

LDTMDP Meeting • Jefferson Lab • Newport News, Virginia February 20-22, 2017

Also

LUND string hadronization

PYTHIA8/DIRE at low energies

, e.g., at W = 10 GeV:

Science

- average number of primary hadrons is < 6
- two hadrons will be produced by the final, somewhat adhoc, decay of the string into two hadrons
- for sea-quarks one hadron comes from a somewhat adhoc remnant treatment

Tuning and possible modifications required.

Pythia8+DIRE and DIS

Pythia8+DIRE at low energies

3D Nucleon Tomography, March 16th 2017

SA

Summary

-ISA

ENERGY

Addendum

TMD analysis at the EIC and requirements

EIC: Ideal facility for studying QCD

Various beam energy:

broad Q² range for

- studying evolution to Q² of ~1000 GeV²
- disentangling nonperturbative and perturbative regimes
- overlap with existing experiments

High luminosity:

high precision

- for various measurements
- in various configurations

JSA

ENERGY

EIC: Ideal facility for studying QCD

Polarization

Understanding hadron structure cannot be done without understanding spin:

- polarized electrons and
- polarized protons/light ions

Transverse and longitudinal polarization of light ions (p, d, ³He):

- 3D imaging in space and momentum
- spin-orbit correlations

Broad range in A from hydrogen to uranium isotopes:

- 3D imaging in space and momentum
- hadronization in the nuclear medium
- EMC effect for gluons
- gluon saturation

Science

Interaction region concept

Total acceptance detector (and IR)

U.S. DEPARTMENT OF Office of Science

JSA

Detector and interaction region

- SA

ENERGY

TMD program in EIC White Paper

Selected analysis requirements

Ultimate measurement of TMDs for quarks

- high-precision measurements require high-precision analysis tools:
 - high-precision MCEG
 - radiative corrections, integrated into MCEG as physics and detector smearing does not factorize
 - high-precision, multi-dimensional statistical analysis, e.g., using unfolding algorithm (HERMES, LHC)
- R_{SIDIS} from JLab 12GeV
- long-lived data repositories of TMD experiment (HERMES, COMPASS, RHIC, JLAB)
 - document analysis publicly for analysis and theory development (RIVET)
 - combined *global* analysis (e.g., HERA fit), perhaps even on event level

Requirements not only for EIC program but also for JLab 12 GeV program. Adiabatic transition from JLab 12GeV to EIC.

EIC Software Consortium (ESC)

Interfaces and integration

- connect existing frameworks / toolkits
- identify the key pieces for a future EIC toolkit
- collaborate with other R&D consortia

Planning for the future with future compatibility

- workshop to discuss new scientific computing developments and trends
- incorporating new standards
- validating our tools on new computing infrastructure

Organizational efforts with an emphasis on communication

- build an active working group and foster collaboration
- documentation about available software
- maintaining a software repository
- workshop organization

ESC project on radiative corrections

- Photon radiation from the leptons modify the one boson cross-section and change the DIS kinematics on the event by event basis
- The direction of the virtual photon is different from the one reconstructed from the leptons, giving rise to:
 - False asymmetries in the azimuthal distribution of hadrons calculated with respect to the virtual photon direction
 - Smearing of the kinematic distributions (e.g. z and P_{hT})
- To take into account correctly this effect in the SIDIS cross-section we need both the correct weights for every event and an unfolding procedure for the smearing. THIS can ONLY be done by using a Monte Carlo code for RC

Status of ESC project on radiative corrections

Deliverables achieved at the end of FY17:

Office of

- Calculate radiative corrections for transverse polarized observables to measure TMDs and polarized exclusive observables.
- Provide proof that the MC phase space constrains on the hadronic final state is equal to calculating radiative corrections for each polarized and unpolarized semi-inclusive hadronic final state independently.
- Define a software framework and develop a library based on this framework, which integrates the radiative corrections depending on polarization and other determining factors in a wrapper-software.

ESC related workshop

3D Nucleon Tomography, March 16th 2017

U.S. DEPARTMENT OF

ENERGY

Office of

Science

JSA

