

3-D Nucleon Tomography Workshop Jefferson Lab, March 16, 2017

Role of JAM^{*} in 3-D nucleon structure

Wally Melnitchouk

* Jefferson Lab Angular Momentum (JAM) Collaboration Nobuo Sato, Jake Ethier, Alberto Accardi

http://www.jlab.org/JAM

N. Sato et al., PRD **93**, 074005 (2016) PRD **94**, 114004 (2016)

Outline

What can PDF analysis ("1-D tomography") do for the study of 3-D nucleon structure?

- "JAM" global PDF analysis
 - → new Iterative Monte Carlo (IMC) methodology, with Bayesian determination of PDF errors
- Applications of IMC
 - \rightarrow first MC extraction of twist-2 and 3 helicity PDFs ("JAM15")
 - \rightarrow first MC analysis of fragmentation functions from e^+e^- ("JAM16")
 - → first simultaneous PDF/FF analysis of DIS, SIDIS and SIA for unambiguous flavor separation ("JAM17")
- Role of PDFs in TMD extraction
 - \rightarrow challenges and opportunities...

Methodology

Analysis of data requires estimating expectation values and variances of observables *O* (= PDFs, FFs)

$$E[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a})$$
$$V[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

→ probability distribution $\mathcal{P}(\vec{a}|\text{data}) \propto \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$ Bayes' theorem priors

→ likelihood function

$$\mathcal{L}(\text{data}|\vec{a}) \sim \exp\left[-\frac{1}{2}\chi^{2}(\vec{a})\right]$$
$$\chi^{2}(\vec{a}) = \sum_{i} \left(\frac{\text{data}_{i} - \text{theory}_{i}(\vec{a})}{\delta(\text{data})}\right)^{2}$$

Methodology

Standard method for evaluating E, V is "maximum likelihood"

→ maximize probability distribution

 $\mathcal{P}(\vec{a}|\text{data}) \rightarrow \vec{a}_0$

 \rightarrow if \mathcal{O} linear in parameters, and if probability is symmetric in all parameters

 $E[\mathcal{O}(\vec{a})] = \mathcal{O}(\vec{a}_0), \qquad V[\mathcal{O}(\vec{a})] \to \text{Hessian}$

- In practice, since in general $E[f(\vec{a})] \neq f(E[\vec{a}])$, maximum likelihood method will sometimes fail
 - \rightarrow need more versatile approach (*e.g.* Monte Carlo)

$$E[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \mathcal{O}(\vec{a}_{k}), \quad V[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \left[\mathcal{O}(\vec{a}_{k}) - E[\mathcal{O}] \right]^{2}$$

Iterative Monte Carlo

Can use traditional functional form for input distribution shape $xf(x) = N x^a (1-x)^b (1 + c \sqrt{x} + d x)$

but sample significantly larger parameter space than possible in single-fit analyses

- \rightarrow no assumptions on exponents
- cross-validation to avoid overfitting
- → iterate until convergence criteria satisfied
- → unambiguous determination of PDF uncertainties

- Maximally utilize high-precision, high-statistics spin data at lower (as well as higher) energies
 - → ~15 experiments completed at JLab, with data straddling resonance & DIS regions
 - → explore systematics of lowering kinematic cuts down to $Q^2 > 1 \text{ GeV}^2$, $W^2 > 3.5 \text{ GeV}^2$
 - \rightarrow control of nuclear and finite- Q^2 corrections
 - → fit experimental L & T asymmetries rather than derived structure functions
 - \rightarrow constrain (poorly-determined) PDFs at large x, and extract higher twist (twist-3) distributions

- Inclusive DIS data constrain $\Delta u^+ \& \Delta d^+$ distributions
 - \rightarrow mostly insensitive to polarized strangeness and glue
- Assume g_1, g_2 can be described as sum of twist $\tau = 2$ and higher twist terms

$$g_{1} = g_{1}^{\tau 2(\text{TMC})} + g_{1}^{\tau 3(\text{TMC})} + g_{1}^{\tau 4}$$

$$g_{2} = g_{2}^{\tau 2(\text{TMC})} + g_{2}^{\tau 3(\text{TMC})} \qquad \text{includes OPE target} \qquad \text{mass corrections}$$

Structure function (moments) at leading twist τ (at NLO)

$$\begin{split} g_{1,\tau 2}^{(n)} &= \frac{1}{2} \sum_{q} e_{q}^{2} \left(\Delta C_{qq}^{(n)} \, \Delta q^{(n)} + \Delta C_{g}^{(n)} \, \Delta g^{(n)} \right) \\ g_{2,\tau 2}^{(n)} &= -\frac{n-1}{n} g_{1,\tau 2}^{(n)} \end{split} \quad \text{Wandzura-Wilczek relation}$$

- Higher twist corrections
 - \rightarrow twist-3 part of g_1 related to twist-3 part of g_2

$$g_1^{\tau 3} = (\rho^2 - 1) \left[g_2^{\tau 3} - 2 \int_x^1 \frac{dy}{y} g_2^{\tau 3} \right]$$

 \rightarrow twist-3 part of g_2 parametrized via twist-3 PDFs

$$D^{\tau 3}(x) = Nx^a(1-x)^b(1+cx)$$
 NOT Q^2 SUPPRESSED!
- at parton level

 \rightarrow similar functional form also for twist-4 part

$$g_1^{\tau 4} = \frac{h(x)}{Q^2} = N' x^{a'} (1-x)^{b'} (1+\gamma' x) \frac{1}{Q^2}$$

at hadron level

Convergence criteria

 \rightarrow convergence after $\sim 5-6$ iterations

 \rightarrow stability for $W^2 > 4 \text{ GeV}^2$

Convergence criteria

 \rightarrow convergence after $\sim 5-6$ iterations

→ stability for $W^2 > 4 \text{ GeV}^2$ and $Q^2 > 1 \text{ GeV}^2$

■ JLab eg1-dvcs (CLAS) data

Impact of JLab data

 xD_u

x

				Number	•	0.5-				0.15			
Experiment	Reference	Observabl	e Target	of points	$\chi^2_{\rm dof}$	0.0	— JAM15	· · ·	$r \Delta u^+$	0.10			xD
EMC	[69]	A_1	p	10	0.40	0.4	no JLab			0.10			
SMC	[70]	A_1	p	12	0.47	0.3-				0.05			
SMC	[70]	A_1	d	12	1.62	0.2				0.00			
SMC	[71]	A_1	р	8	1.26	0.2				0.00			
SMC	[71]	A_1	d	8	0.57	0.1				-0.05		I	
COMPASS	[72]	A_1	р	15	0.92			I I I			+ + + + + + + + + + + +		·
COMPASS	[73]	A_1	d	15	0.67				li l	0.15	rD_{J}	\sim	
COMPASS	[39]	A_1	р	51	0.76	-0.05				0.10-	xD_d		Â
SLAC E80/E130	[74]	A_{\parallel}	р	22	0.59		N.			0.05		AAA	<u> </u>
SLAC E142	[75]	A_1	³ He	8	0.49	-0.10				0.00			
SLAC E142	[75]	A_2	³ He	8	0.60					0.00			
SLAC E143	[76]	$\bar{A_{\parallel}}$	р	81	0.80	-0.15	$x \Delta d^+$			-0.05			\square
SLAC E143	[76]	A_{\parallel}	d	81	1.12					-0.10			· .
SLAC E143	[76]	$A^{"}$	p	48	0.89	0.04			"	0.010	+ + + + + + + + - + - + - + - + - + - +		(<u> </u>
SLAC E143	[76]	A^{\perp}	d	48	0.91	0.01				0.010			\frown
SLAC E154	[77]	A_{\parallel}	³ He	18	0.51	0.02			$\setminus $	0.005			X
SLAC E154	[77]	A_{\perp}^{\parallel}	³ He	18	0.97	0.00				0.000			
SLAC E155	[78]	A_{\parallel}	p	71	1.20	0.02				-0.005			
SLAC E155	[79]		d I	71	1.05	-0.02		9///	$x\Delta s^+$	0.000	xH_p		J
SLAC E155	[80]	A_{\perp}	n	65	0.99	-0.04				-0.010			
SLAC E155	[80]	A_{\perp}	r d	65	1.52	F			-	0.06-	+ + + + + + + + + + + + + + + + + + + +		,
SLAC E155x	[81]	à .	p	116	1.27	0.2			m A a	0.04	rH		A
SLAC E155x	[81]	$\tilde{\lambda}$	d I	115	0.83	0.1			$x \Delta g$	0.04	x n		\rightarrow
HERMES	[82]		"n"	0	0.05	0.1				0.02			$\not >$
HERMES	[82]	А ₁ А.,	n	35	0.23 0.47					0.00			
HERMES	[83]	21 	P d	35	0.47	0.0				_0.02		1 C	SA
HERMES	[8/]		u n	10	0.94	0.1				-0.02			
$\Pi = h F = 00^{-117}$	[85]	A.,	р 3Цо	19	0.95	-0.1	10^{-2} 0	1 0.3 0.5	0.7 r	-0.04	10^{-2}	0.1 0.3 0	5 0.7
ILab E = 500.117	[05]		3Lo	3	1.58		10 0.		on a		10	012 010 0	
JLab E99-117	[03]	A_{\perp}	3110	14	1.30 2.12								
JLab E06-014	[1/]		³ 11-	14	2.12								
JLab egi dues	[10]	A_{\perp}	⁻ He	14	1.00								
I ab ag1 duga	[13]		p d	193	1.32		→ redu	iced i	unce	ertair	ntv in	Λs^+	Δa
JLab egi-aves	[13]		a	114	0.94						··/ ···	<u> </u>	_ 9
JLab egib	[14]	A_{\parallel}	p	890	1.11								
JLab egib	[16]	A_{\parallel}	d	218	1.02		> non7	oro ·	tavic	+ 2 ~	ontril		
Iotal				2515	1.07		→ IIUIIZ		LVVIS	いーンし		JUUOI	12

Impact of JLab data

2

3

 $Q^2 (\text{GeV}^2)$

4

5

2

1

3

 $Q^2 (\text{GeV}^2)$

5

-0.005

or "transverse force" acting on quarks

Comparison with other analyses

Moment	Truncated	Full
Δu^+	0.82 ± 0.01	0.83 ± 0.01
Δd^+	-0.42 ± 0.01	-0.44 ± 0.01
Δs^+	-0.10 ± 0.01	-0.10 ± 0.01
$\Delta\Sigma$	0.31 ± 0.03	0.28 ± 0.04
ΔG	0.5 ± 0.4	1 ± 15
d_2^p	0.005 ± 0.002	0.005 ± 0.002
$d_2^{\overline{n}}$	-0.001 ± 0.001	-0.001 ± 0.001
$h_p^{}$	-0.000 ± 0.001	0.000 ± 0.001
h_n	0.001 ± 0.002	0.001 ± 0.003

- \rightarrow u and d polarization similar to earlier results
- \rightarrow s-quark polarization <u>negative</u>
- → gluon polarization similar to recent DSSV fits — moment unconstrained

Polarization of quark sea?

- Inclusive DIS data cannot distinguish between q and \overline{q}
 - \rightarrow semi-inclusive DIS sensitive to $\Delta q \& \Delta \bar{q}$

$$\sim \sum_{q} e_{q}^{2} \left[\Delta q(x) D_{q}^{h}(z) + \Delta \bar{q}(x) D_{\bar{q}}^{h}(z) \right]$$

 \rightarrow but need fragmentation functions!

- Global analysis of DIS + SIDIS data gives different sign for strange quark polarization for different fragmentation functions!
 - $\rightarrow \Delta s > 0 \ \text{ for "DSS" parametrization } de \ \textit{Florian et al., PRD75, 094009 (2007)} \\ \Delta s < 0 \ \text{ for "HKNS" parametrization } Hirai \ et al., PRD75, 114010 (2007) \\ \end{cases}$
 - \rightarrow need to understand origin of differences in fragmentation!

IMC analysis of fragmentation functions Analyze single-inclusive e^+e^- annihilation data for pion & kaon production from DESY, CERN, SLAC & KEK from $Q \sim 10$ GeV to Z-boson pole

		Observable		Pions				Kaons			
Experiment	Ref.		Q (GeV)	N _{dat}	norm.	χ^2	N _{dat}	norm.	χ^2		
ARGUS	[26]	Inclusive	9.98	35	1.024 (1.058)	51.1 (55.8)	15	1.007	8.5		
Belle	[38,39]	Inclusive	10.52	78	0.900 (0.919)	37.6 (21.7)	78	0.988	10.9		
BABAR	[40]	Inclusive	10.54	39	0.993 (0.948)	31.6 (70.7)	30	0.992	4.9		
TASSO	[23–25]	Inclusive	12-44	29	(*)	37.0 (38.8)	18	(*)	14.3		
TPC	[27–29]	Inclusive	29.00	18	1	36.3 (57.8)	16	1	47.8		
		uds tag	29.00	6	1	3.7 (4.6)					
		b tag	29.00	6	1	8.7 (8.6)					
		c tag	29.00	6	1	3.3 (3.0)					
HRS	[30]	Inclusive	29.00	2	1	4.2 (6.2)	3	1	0.3		
TOPAZ	[37]	Inclusive	58.00	4	1	4.8 (6.3)	3	1	0.9		
OPAL	[32,33]	Inclusive	91.20	22	1	33.3 (37.2)	10	1	6.3		
		<i>u</i> tag	91.20	5	1.203 (1.203)	6.6 (8.1)	5	1.185	2.1		
		d tag	91.20	5	1.204 (1.203)	6.1 (7.6)	5	1.075	0.6		
		s tag	91.20	5	1.126 (1.200)	14.4 (11.0)	5	1.173	1.5		
		c tag	91.20	5	1.174 (1.323)	10.7 (6.1)	5	1.169	13.2		
		b tag	91.20	5	1.218 (1.209)	34.2 (36.6)	4	1.177	10.9		
ALEPH	[34]	Inclusive	91.20	22	0.987 (0.989)	15.6 (20.4)	18	1.008	6.1		
DELPHI	[35,36]	Inclusive	91.20	17	1	21.0 (20.2)	27	1	3.9		
		uds tag	91.20	17	1	13.3 (13.4)	17	1	22.5		
		b tag	91.20	17	1	41.9 (42.9)	17	1	9.1		
SLD	[31]	Inclusive	91.28	29	1.002 (1.004)	27.3 (36.3)	29	0.994	14.3		
		uds tag	91.28	29	1.003 (1.004)	51.7 (55.6)	29	0.994	42.6		
		c tag	91.28	29	0.998 (1.001)	30.2 (40.4)	29	1.000	31.7		
		b tag	91.28	29	1.005 (1.005)	74.6 (61.9)	28	0.992	134.1		
Total:				459		599.3 (671.2)	391		395.0		
					$\chi^2/N_{\rm dat} = 1.31$		$\chi^2/N_{\rm da}$	$_{\rm ut} = 1.01$			

IMC analysis of fragmentation functions

 \rightarrow convergence after ~ 20 iterations

IMC analysis of fragmentation functions

- \rightarrow favored FFs well constrained; unfavored not as well...
- → nontrivial shape of $s \to K$ fragmentation — impact on Δs^+ extraction?
- \rightarrow very hard $g \rightarrow K$ fragmentation??

Synergy with event generators

- Can one obtain further insights into shapes and magnitudes of FFs from MC event generators, *e.g.* Pythia?
 - \rightarrow JLab LDRD

Phenomenological Study of Hadronization in Nuclear and High-Energy Physics Experiments

LDRD Personnel

- → compare Lund string fragmentation with "CSS" (Collins-Soper-Sterman) type factorization
- → develop MC event generator for TMDs, including spin

Simultaneous PDF + FF analysis First combined analysis of DIS + SIDIS + SIA data, with simultaneous extraction of PDFs and fragmentation functions

J. Ethier (2017)

Role of PDFs in 3-D structure

Factorization in TMD observables

• Region of $q_T \ll Q$

"TMD jargon"

- TMD approx. dominates $\rightarrow~\Gamma\approx \mathbf{T}_{\mathrm{TMD}}\Gamma$
- \mathbf{Y} term small

• Region of $q_T \gtrsim Q$

$$W = T_{TMD}\Gamma$$
$$FO = T_{coll}\Gamma$$
$$ASY = T_{coll}T_{TMD}\Gamma$$
$$Y = FO - ASY$$

- Collinear approx. dominates $\rightarrow~\Gamma\approx {\bf T}_{\rm coll}\Gamma$
- At large Q, $\mathbf{T}_{\mathbf{TMD}}\Gamma$ is mostly perturbative

Collins, Gamberg, Prokudin, Rogers, Sato, Wang PRD 94, 034014 (2016)

Role of PDFs in 3-D structure

Cross section and structure functions (SIDIS)

$$\frac{d^5 \sigma(S_{\perp})}{dx_B dQ^2 dz_h d^2 P_{h\perp}} = \sigma_0 \Big[F_{UU} + \sin(\phi_h - \phi_s) \ F_{UT}^{\sin(\phi_h - \phi_s)} + \sin(\phi_h + \phi_s) \ \frac{2(1-y)}{1+(1-y)^2} \ F_{UT}^{\sin(\phi_h + \phi_s)} + \dots \Big]$$

CSS formalism

$$F_{UU} = H_{\text{SIDIS}} \frac{1}{z_h^2} \int_0^\infty \frac{db \, b}{(2\pi)} J_0(q_{h\perp} b) \widetilde{W}_{UU}(b_*) + Y_{UU}$$

$$F_{UT}^{\sin(\phi_h - \phi_s)} = -H_{\text{SIDIS}} \frac{M_P}{z_h^2} \int_0^\infty \frac{db \, b^2}{(2\pi)} J_1(q_{h\perp} b) \widetilde{W}_{UT}^{\sin(\phi_h - \phi_s)}(b_*) + Y_{UT}^{\sin(\phi_h - \phi_s)}$$

$$F_{UT}^{\sin(\phi_h + \phi_s)} = H_{\text{SIDIS}} \frac{M_h}{z_h^2} \int_0^\infty \frac{db \, b^2}{(2\pi)} J_1(q_{h\perp} b) \widetilde{W}_{UT}^{\sin(\phi_h + \phi_s)}(b_*) + Y_{UT}^{\sin(\phi_h + \phi_s)}$$
hard scattering
$$b_* \rightarrow b, \quad b \ll b_{\text{max}}$$

$$G_* \rightarrow b_{\text{max}}, \quad b \gg b_{\text{max}}$$
"Y" term

Role of PDFs in 3-D structure

• W term formulation in b_T space

$$\widetilde{W}_{UU}(b_{*}) \equiv e^{-S_{pert}(Q,b_{*}) - S_{NP}^{f_{1}}(Q,b) - S_{NP}^{D_{1}}(Q,b)} \widetilde{F}_{UU}(b_{*})$$

$$\widetilde{W}_{UT}^{\sin(\phi_{h} - \phi_{s})}(b_{*}) \equiv e^{-S_{pert}(Q,b_{*}) - S_{NP}^{f_{1T}^{\perp}}(Q,b) - S_{NP}^{D_{1}}(Q,b)} \widetilde{F}_{UT}^{\sin(\phi_{h} - \phi_{s})}(b_{*})$$

$$\widetilde{W}_{UT}^{\sin(\phi_{h} + \phi_{s})}(b_{*}) \equiv e^{-S_{pert}(Q,b_{*}) - S_{NP}^{h_{1}}(Q,b) - S_{NP}^{H_{1}^{\perp}}(Q,b)} \widetilde{F}_{UT}^{\sin(\phi_{h} + \phi_{s})}(b_{*})$$

Small b_T contribution

$$\widetilde{F}_{UU}(b_*) = \sum_{q} e_q^2 \left(C_{q \leftarrow i}^{f_1} \otimes f_1^i(x_B, \mu_b) \right) \left(\hat{C}_{j \leftarrow q}^{D_1} \otimes D_{h/j}(z_h, \mu_b) \right)$$

$$\widetilde{F}_{UT}^{\sin(\phi_h - \phi_s)}(b_*) = \sum_{q} e_q^2 \left(C_{q \leftarrow i}^{f_{1T}^\perp} \otimes f_{1T}^{\perp(1)i}(x_B, \mu_b) \right) \left(\hat{C}_{j \leftarrow q}^{D_1} \otimes D_{h/j}(z_h, \mu_b) \right)$$

$$\widetilde{F}_{UT}^{\sin(\phi_h + \phi_s)}(b_*) = \sum_{q} e_q^2 \left(\delta C_{q \leftarrow i}^{h_1} \otimes h_1^i(x_B, \mu_b) \right) \left(\delta \hat{C}_{j \leftarrow q}^{H_1^\perp} \otimes \hat{H}_1^{\perp(1)j}(z_h, \mu_b) \right)$$

$$\text{collinear PDFs and FFs!}$$

Can this describe TMD cross sections at low energies?

Asaturyan et al. [JLab Hall C], PRC 85, 015202 (2012)

Can this describe TMD cross sections at low energies?

Sato, Wang, Rogers... (2016)

$$Q^2 = 1.92 \text{ GeV}^2$$

 $x = 0.0318$
 $z = 0.375$

- → fixed-order (collinear) calculation *should* describe high- $q_{\rm T}$ region...
 - → SIDIS cross section *must* be understood for any TMD analysis of JLab12 data!

Outlook

- Goal for collinear distributions
 - "universal" QCD analysis of all observables sensitive to collinear (unpolarized & polarized) PDFs & FFs in IMC framework
- Longer-term goal
 - apply IMC technology (where appropriate) to global QCD analysis of TMD PDFs and FFs
- Need to understand realm of applicability of TMD factorization at low energies
 — vital for analysis and interpretation of JLab12 data

