DE LA RECHERCHE À L'INDUSTRIE

PARTONS: A versatile framework for the phenomenology of GPDs

www.cea.fr

3D Nucleon Tomography Workshop 2017 | Hervé MOUTARDE

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○日 のへで

Mar. 16 $^{\rm th}$, 2017

Motivation.

3D imaging of nucleon's partonic content but also...

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

- Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.
 - Insights on:
 - Spin structure,
 - **Energy-momentum** structure.
- **Probabilistic interpretation** of Fourier transform of GPD($x, \xi = 0, t$) in **transverse plane**.

Transverse plane density (Goloskokov and Kroll model)

DE LA RECHERCHE À L'INDUSTRI

Motivation.

Study nucleon structure to shed new light on nonperturbative QCD.

Towards hadron tomography. GPDs as a scalpel-like probe of hadron structure.

PARTONS Framework

1 The problem of 3D imaging:

What do we want?

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features Examples
- Examples Architecture
- Conclusion

Phenomenology, GPD models, experimental images: What can we actually do?

3 Computing framework:

What can we expect from the near future?

H. Moutarde | Nucleon Tomography 2017 | 4 / 44

Principles of nucleon 3D imaging

↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶
 ↓□▶

PARTONS Framework

Motivation

Imaging

Experimental access

DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry

Radon transform

Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

イロト イポト イヨト イヨト

PARTONS Framework

Motivation

Imaging

Experimental access

DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

イロト イポト イヨト イヨト

PARTONS Framework

Motivation

Imaging

Experimental access

DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

Perturbative

Nonperturbative

PARTONS Framework

Motivation

Imaging

Experimental access

DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

DVCS

Exclusive processes of current interest (1/2). Factorization and universality. CEA DVCS Q^2 PARTONS Framework Perturbative

Motivation

Imaging

Experimental access DVCS kinematics

Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

Perturbative Nonperturbative

Nonperturbative

Isfu

Saclay

PARTONS Framework

Motivation

Imaging

Experimental access

DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

Cesa .

Exclusive processes of present interest (2/2). Factorization and universality.

PARTONS Framework

Motivation

Imaging

Experimental access

DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples

Architecture

Conclusion

Bjorken regime : large Q^2 and fixed $xB \simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on factorization theorems.
- All-order proofs for DVCS, TCS and some DVMP.
- GPDs depend on a (arbitrary) factorization scale μ_{F} .
- **Consistency** requires the study of **different channels**.

GPDs enter DVCS through **Compton Form Factors** :

$$\mathcal{F}(\xi, t, Q^2) = \int_{-1}^{1} dx C\left(x, \xi, \alpha_{\mathcal{S}}(\mu_F), \frac{Q}{\mu_F}\right) F(x, \xi, t, \mu_F)$$

for a given GPD *F*.

• CFF \mathcal{F} is a **complex function**.

 < □ > < ⊡ > < ≧ > < ≧ > < ≧ > < ≧</td>
 ≥

 H. Moutarde
 Nucleon Tomography 2017
 7 / 44

Need for global fits of world data. Different facilities will probe different kinematic domains.

PARTONS Framework

Motivation

Imaging

Experimental access
DVCS kinematics

Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples

Architecture

 $\langle \Box \rangle$

Need for global fits of world data. Different facilities will probe different kinematic domains.

PARTONS Experimental data collected at Valence quarks Framework 3 facilities Motivation Imaging Experimental access DVCS kinematics Towards 3D images [<]DESY• Modeling Limitations Lorentz symmetry CERN Radon transform Thomas Covariant extension Jefferson Computing Design National Features Examples Laboratory Architecture Conclusion

 $\langle \Box \rangle$

Design Features Examples

Need for global fits of world data. Different facilities will probe different kinematic domains.

PARTONS Experimental data collected at Valence quarks Framework 3 facilities Motivation Imaging Experimental access DVCS kinematics Towards 3D images **DESY** Modeling Limitations Lorentz symmetry CERN Radon transform Thomas Covariant extension Jefferson Sea quarks Computing National Laboratory Architecture Conclusion

Need for global fits of world data. Different facilities will probe different kinematic domains.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics

Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples

Architecture

Conclusion

Imaging the nucleon. How? Extracting GPDs is not enough...Need to extrapolate!

1. Experimental data fits 2. GPD extraction PARTONS Framework $H^{+}(x, t; \Xi=0.2, O^{2}=4)$ $\Delta \sigma$ [pb.GeV⁻⁴] 15. Motivation 0.1 Imaging Experimental access = 0.5-10 DVCS kinematics $= 6.3 \text{ GeV}^2$ -1.08,05,0,4,02 0,02,0,4,08,08,1 0 0.735 GeV^2 Towards 3D images 0.2 Modeling ϕ [deg] Limitations Lorentz symmetry 3. Nucleon imaging Radon transform Covariant extension Images from Guidal et al., Computing Rept. Prog. Phys. 76 (2013) 066202 The 2015 Long Range Plan for Nuclear Science Design Features Examples Sidebar 2.2: The First 3D Pictures of the Nucleon Architecture 2 A computed tomography (CT) scan can help physicians pinpoint minute cancer tumors, diagnose tiny broken Conclusion 1 bones, and spot the early signs of osteoporosis. 0,[fm] Now physicists are using the principles behind the 0 procedure to peer at the inner workings of the proton. This breakthrough is made possible by a relatively new -1 concept in nuclear physics called generalized parton distributions. -2 -1 0 1 -1 Ó -2 b, [fm] b_x [fm] An intense beam of high-energy electrons can be used

H. Moutarde

Nucleon Tomography 2017

9 / 44

Imaging the nucleon. How? Extracting GPDs is not enough...Need to extrapolate!

= nar

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design

Features

- Examples
- Architecture

Conclusion

1 Extract $H(x, \xi, t, \mu_F^{ref})$ from experimental data.

- **2** Extrapolate to vanishing skewness $H(x, 0, t, \mu_F^{ref})$.
- **3 Extrapolate** $H(x, 0, t, \mu_F^{ref})$ up to infinite *t*.
- **4 Compute** 2D Fourier transform in transverse plane:

$$\mathcal{H}(x, b_{\perp}) = \int_{0}^{+\infty} \frac{\mathrm{d}|\Delta_{\perp}|}{2\pi} |\Delta_{\perp}| J_0(|b_{\perp}||\Delta_{\perp}|) \mathcal{H}(x, 0, -\Delta_{\perp}^2)$$

- 5 Propagate uncertainties.
- 6 **Control** extrapolations with an accuracy matching that of experimental data with **sound** GPD models.

イロト イポト イヨト イヨト

Practice of nucleon 3D imaging

4 ロ ト 4 日 ト 4 三 ト 4

≣ ▶

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features
- Examples
- Architecture

Conclusion

GPD H at t = -0.23 GeV² and $Q^2 = 2.3$ GeV².

H. Moutarde Nucleon Tomography 2017 11 / 44

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features
- Examples
- Architecture

Conclusion

Need to know $H(x, \xi = 0, t)$ to do transverse plane imaging.

GPD model: see Kroll et al., Eur. Phys. J. C73, 2278 (2013)

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples

Architecture

Conclusion

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples

Architecture

Conclusion

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features Examples
- Architecture
-

Conclusion

$\xi_{\rm max}$ from kinematic constraint on 4-momentum transfer.

H. Moutarde Nucleon Tomography 2017 11 / 44

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features Examples
- Examples
- Architecture

Conclusion

H. Moutarde Nucleon Tomography 2017 11 / 44

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features Examples
- Architecture
- Conclusion

The black curve is what is needed for transverse plane imaging!

PARTONS Framework

Density plot of H at t = -0.23 GeV² and $Q^2 = 2.3$ GeV²

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

Design Features

Examples

Architecture

Conclusion

A simplification brought by GPDs?! We don't need to know the GPD everywhere to image the proton!

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

H. Moutarde Nucleon Tomography 2017 12 / 44

A simplification brought by GPDs?! We don't need to know the GPD everywhere to image the proton!

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

- Limitations
- Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features Examples
- Architecture

Conclusion

General idea

- Assume $H(x, \xi, t)$ is known for all x and $\xi \in [\xi_{\min}, \xi_{\max}]$.
- Then all Mellin moments are known for $\xi \in [\xi_{\min}, \xi_{\max}]$.
- Mellin moments are **polynomials** in ξ and in particular can be evaluated at ξ = 0.
- The knowledge of the Mellin moments at ξ = 0 uniquely determines the transverse plane density H(x, 0, b_⊥).
- *Caveat*: **ill-posed problem** in the sense of Hadamard.

イロト イボト イヨト イヨト

PARTONS Framework

2

V

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

$$H^q(x,0,0) = q(x)$$

 < □ > < ⊡ > < Ξ > < Ξ > < Ξ > Ξ

 H. Moutarde
 Nucleon Tomography 2017
 13 / 44

PARTONS Framework

9

n

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

$$\begin{aligned} \mathcal{H}_{\pi}^{q}(x,\xi,t) &= \\ \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}} \end{aligned}$$
with $t = \Delta^{2}$ and $\xi = -\Delta^{+}/(2P^{+})$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Ji, Phys. Rev. Lett. **78**, 610 (1997) Radyushkin, Phys. Lett. **B380**, 417 (1996)

- PDF forward limit
- Form factor sum rule

 z^3

$$\int_{-1}^{+1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$$

H. Moutarde | Nucleon To

Nucleon Tomography 2017 | 13 / 44

PARTONS Framework

 $\frac{1}{2}$

with

Motivation

Imaging

Experimental access **DVCS** kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$$
with $t = \Delta^{2}$ and $\xi = -\Delta^{+}/(2P^{+})$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994)
Ji, Phys. Rev. Lett. **78**, 610 (1997)
Radyushkin, Phys. Lett. **B380**, 417 (1996)

- PDF forward limit
 - Form factor sum rule
- H^q is an even function of ξ from time-reversal invariance.

H. Moutarde Nucleon Tomography 2017 13 / 44

イロト イポト イヨト イヨト

PARTONS Framework $H^q_{\pi}(x,\xi)$

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$$
with $t = \Delta^{2}$ and $\xi = -\Delta^{+}/(2P^{+})$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994)
Ji, Phys. Rev. Lett. **78**, 610 (1997)

PDF forward limit

- Form factor sum rule
- H^q is an even function of ξ from time-reversal invariance.
- H^q is real from hermiticity and time-reversal invariance.

H. Moutarde Nucleon Tomography 2017 13 / 44

Radyushkin, Phys. Lett. **B380**, 417 (1996)

Polynomiality. Mixed constraint from Lorentz invariance and discrete symmetries.

1.1

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

Express Mellin moments of GPDs as **matrix elements**:

$$\int_{-1}^{+1} \mathrm{d}x \, x^m H^q(x,\xi,t)$$

= $\frac{1}{2(P^+)^{m+1}} \left\langle P + \frac{\Delta}{2} \right| \bar{q}(0) \gamma^+ (i\overleftrightarrow{D}^+)^m q(0) \left| P - \frac{\Delta}{2} \right\rangle$

Identify the Lorentz structure of the matrix element: linear combination of $(P^+)^{m+1-k}(\Delta^+)^k$ for $0 \le k \le m+1$

- Remember definition of skewness $\Delta^+ = -2\xi P^+$.
- Select even powers to implement time reversal.
- Obtain polynomiality condition:

$$\int_{-1}^{1} \mathrm{d}x x^{m} H^{q}(x,\xi,t) = \sum_{i=0}^{m} (2\xi)^{i} C^{q}_{mi}(t) + (2\xi)^{m+1} C^{q}_{mm+1}(t) .$$

Nucleon Tomography 2017

14 / 44

H. Moutarde

Double Distributions. Lorentz covariance by example.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

• Choose
$$F^q(\beta, \alpha) = 3\beta\theta(\beta)$$
 ad $G^q(\beta, \alpha) = 3\alpha\theta(\beta)$:

$$H^{q}(x,\xi) = 3x \int_{\Omega} d\beta d\alpha \,\delta(x - \beta - \alpha\xi)$$

Simple analytic expressions for the GPD:

$$\begin{aligned} \mathcal{H}(x,\xi) &= \frac{6x(1-x)}{1-\xi^2} \text{ if } 0 < |\xi| < x < 1, \\ \mathcal{H}(x,\xi) &= \frac{3x(x+|\xi|)}{|\xi|(1+|\xi|)} \text{ if } -|\xi| < x < |\xi| < 1. \end{aligned}$$

H. Moutarde | Nucleon Tomography 2017 | 15 / 44

イロト イポト イヨト イヨト

Double Distributions. Lorentz covariance by example.

PARTONS	Compute first Mellin moments.			
Framework	п	$\int_{-\xi}^{+\xi} \mathrm{d}x x^n H(x,\xi)$	$\int_{+\xi}^{+1} \mathrm{d}x x^n H(x,\xi)$	$\int_{-\xi}^{+1} \mathrm{d}x x^n H(x,\xi)$
Motivation Imaging Experimental access DVCS kinematics	0	$\frac{1+\xi-2\xi^2}{1+\xi}$	$\frac{2\xi^2}{1+\xi}$	1
Towards 3D images Modeling Limitations	1	$\frac{1\!+\!\xi\!+\!\xi^2\!-\!3\xi^3}{2(1\!+\!\xi)}$	$\frac{2\xi^3}{1+\xi}$	$\frac{1+\xi^2}{2}$
Lorentz symmetry Radon transform Covariant extension	2	$\frac{3(1-\xi)(1+2\xi+3\xi^2+4\xi^3)}{10(1+\xi)}$	$\frac{6\xi^4}{5(1+\xi)}$	$\frac{3(1+\xi^2)}{10}$
Computing Design Features Examples Architecture	3	$\frac{1\!+\!\xi\!\!+\!\xi^2\!+\!\xi^3\!+\!\xi^4\!-\!5\xi^5}{5(1\!+\!\xi)}$	$\frac{6\xi^5}{5(1+\xi)}$	$\frac{1+\xi^2+\xi^4}{5}$
Conclusion	4	$\frac{1\!+\!\xi\!\!+\!\xi^2\!+\!\xi^3\!+\!\xi^4\!+\!\xi^5\!-\!6\xi^6}{7(1\!+\!\xi)}$	$\frac{6\xi^6}{7(1+\xi)}$	$\frac{1+\xi^2+\xi^4}{7}$
Expressions get more complicated as n increases But				
they always yield polynomials!				
	H. Moutarde Nucleon Tomography 2017 15 / 44			
OF LA RECARCAE À L'INDUSTR

The Radon transform. Definition and properties.

 α

S

n

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform

Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

For s > 0 and $\phi \in [0, 2\pi]$: $\mathcal{R}f(s, \phi) = \int_{-\infty}^{+\infty} d\beta d\alpha f(\beta, \alpha) \delta(s - \beta \cos \phi - \alpha \sin \phi)$ and:

$$\mathcal{R}f(-s,\phi) = \mathcal{R}f(s,\phi\pm\pi)$$

Relation to GPDs:

$$x = \frac{s}{\cos \phi} \text{ and } \xi = \tan \phi$$

Relation between GPD and DD in Belistky et al. gauge

$$\frac{\sqrt{1+\xi^2}}{x}H(x,\xi) = \mathcal{R}f_{\rm BMKS}(s,\phi) ,$$

OF LA RECHERCHE À L'INDUSTR

The Radon transform. Definition and properties.

 α

S

n

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform

Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

For s > 0 and $\phi \in [0, 2\pi]$: $\mathcal{R}f(s, \phi) = \int_{-\infty}^{+\infty} d\beta d\alpha f(\beta, \alpha) \delta(s - \beta \cos \phi - \alpha \sin \phi)$ and:

$$\mathcal{R}f(-s,\phi) = \mathcal{R}f(s,\phi\pm\pi)$$

Relation to GPDs:

$$x = \frac{s}{\cos \phi} \text{ and } \xi = \tan \phi$$

Relation between GPD and DD in Pobylitsa gauge

$$\frac{\sqrt{1+\xi^2}}{1-x}H(x,\xi) = \mathcal{R}f_{\mathrm{P}}(s,\phi) ,$$

The range of the Radon transform. The polynomiality property a.k.a. the Ludwig-Helgason condition.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform

Covariant extension

Computing

Design Features Examples

Architecture

Conclusion

 The Mellin moments of a Radon transform are homogeneous polynomials in ω = (sin φ, cos φ).

The converse is also true:

Theorem (Hertle, 1983)

Let $g(s, \omega)$ an even compactly-supported distribution. Then g is itself the Radon transform of a compactly-supported distribution if and only if the **Ludwig-Helgason consistency condition** hold:

(i) g is
$$C^{\infty}$$
 in ω ,

(ii) $\int ds \, s^m g(s, \omega)$ is a homogeneous polynomial of degree m for all integer $m \ge 0$.

 Double Distributions and the Radon transform are the natural solution of the polynomiality condition.

H. Moutarde | Nucleon Tomography 2017 | 17 / 44

Support theorem.

Theorem

We don't need to know the GPD everywhere to image the proton!

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry

Radon transform

Covariant extension

Computing

Design Features

Examples

Architecture

Conclusion

Let f be a compactly-supported summable function defined on \mathbb{R}^2 and $\mathcal{R}f$ its Radon transform. Let $(s_0, \omega_0) \in \mathbb{R} \times S^1$ and U_0 an open neighborhood of ω_0 s.t.:

for all $s > s_0$ and $\omega \in U_0$ $\mathcal{R}f(s, \omega) = 0$.

Then $f(\aleph) = 0$ on the half-plane $\langle \aleph | \omega_0 \rangle > s_0$ of \mathbb{R}^2 .

Overlap representation. A first-principle connection with Light Front Wave Functions.

PARTONS Framework

Decompose an hadronic state $|H; P, \lambda\rangle$ in a Fock basis:

Motivation

Imaging

Experimental access

DVCS kinematics Towards 3D images

Modeling

Limitations

Lorentz symmetry Radon transform

Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

$$H; P, \lambda \rangle = \sum_{N,\beta} \int [\mathrm{d}x \mathrm{d}\mathbf{k}_{\perp}]_{N} \psi_{N}^{(\beta,\lambda)}(x_{1}, \mathbf{k}_{\perp 1}, \dots, x_{N}, \mathbf{k}_{\perp N}) |\beta, k_{1}, \dots, k_{N} \rangle$$

• Derive an expression for the pion GPD in the DGLAP region $\xi \le x \le 1$:

$$\mathcal{H}^{q}(x,\xi,t) \propto \sum_{\beta,j} \int [\mathrm{d}\bar{x}\mathrm{d}\bar{\mathbf{k}}_{\perp}]_{N} \delta_{j,q} \delta(x-\bar{x}_{j}) \big(\psi_{N}^{(\beta,\lambda)}\big)^{*}(\hat{x}',\hat{\mathbf{k}}'_{\perp}) \psi_{N}^{(\beta,\lambda)}(\tilde{x},\tilde{\mathbf{k}}_{\perp})$$

with $\tilde{x}, \tilde{\mathbf{k}}_{\perp}$ (resp. $\hat{x}', \hat{\mathbf{k}}'_{\perp}$) generically denoting incoming (resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. B596, 33 (2001)

■ Similar expression in the ERBL region -ξ ≤ x ≤ ξ, but with overlap of N- and (N+2)-body LFWFs.

H. Moutarde Nucleon Tomography 2017 19 / 44

Overlap representation. Advantages and drawbacks.

PARTONS Framework

- Physical picture.
- Positivity relations are fulfilled **by construction**.

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

■ Implementation of symmetries of *N*-body problems.

What is not obvious anymore

What is *not* obvious to see from the wave function representation is however the **continuity of GPDs at** $x = \pm \xi$ and the **polynomiality** condition. In these cases both the DGLAP and the ERBL regions must cooperate to lead to the required properties, and this implies **nontrivial relations between the wave functions** for the different Fock states relevant in the two regions. An *ad hoc* Ansatz for the wave functions would **almost certainly lead** to GPDs that **violate the above requirements**.

Diehl, Phys. Rept. 388, 41 (2003)

Cea

Covariant and positive GPD models. First systematic procedure to build models satisfying all constraints.

COA

Covariant and positive GPD models. First systematic procedure to build models satisfying all constraints.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

Gaussian LFWF

Chouika Work in progress

- Numerics under control for **smooth** LFWFs.
- Still need to investigate situation with Regge behavior.
- Towards common modeling of GPDs and TMDs?

イロト イポト イヨト イヨト

Building the tools for high precision: the PARTONS project

PARtonic Tomography Of Nucleon Software

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ ○ ○ ○

The challenge of the high precision era. Higher order and higher twist contributions, and GPD modeling.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design
- Features
- Examples
- Architecture

Conclusion

- Evaluation of the impact of **higher order** effects.
- Evaluation of the impact of **target mass and finite**-*t* corrections.
- Evaluation of the contribution of **higher twist** GPDs.
 - DVMP: sensitivity to **DA models**.
 - Extrapolations with **GPD models**.

イロト イポト イモト イモト

Cea

Software for the phenomenology of GPDs. Different questions to be answered with the same tools.

Software for the phenomenology of GPDs. Different questions to be answered with the same tools.

Computing chain design. Differential studies: physical models and numerical methods.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design

Features

Examples

Architecture

Conclusion

Experimental data and phenomenology

Computation of amplitudes

principles and

fundamental parameters

First

Small distance contributions

Full processes

Large distance contributions

H. Moutarde

Nucleon Tomography 2017

不同 トイモトイモト

Design Features Examples

Computing chain design. Differential studies: physical models and numerical methods.

H. Moutarde

Nucleon Tomography 2017

Differential studies: physical models and numerical methods.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design
- Features Examples
- Examples
- Architecture

Conclusion

phenomenology Computation of amplitudes First

Experimental

data and

principles and fundamental parameters

Differential studies: physical models and numerical methods.

PARTONS Framework Experimental DVMP DVCS Many TCS data and observables. Motivation phenomenology Imaging Kinematic reach. Experimental access DVCS kinematics Towards 3D images Modeling DVMP DVCS ഗ Limitations Computation Lorentz symmetry Radon transform of amplitudes Covariant extension Computing Design Features Examples GPD at $\mu \neq \mu_{F}^{ref}$ First Architecture Conclusion principles and Evolution fundamental GPD at μ_{F}^{ref} parameters

H. Moutarde

Nucleon Tomography 2017

< 回 > < 三 > < 三 >

Differential studies: physical models and numerical methods.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design

- Features Examples
- Architecture

Conclusion

Experimental data and phenomenology Need for modularity Computation

of amplitudes

Many observables.

Kinematic reach.

Perturbative approximations.

- Physical models.
- Fits.

< A 1

- Numerical methods.
- Accuracy and speed.

H. Moutarde

Differential studies: physical models and numerical methods.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design
- Features Examples
- Architecture

Conclusion

data and phenomenology Need for modularity Computation of amplitudes

Experimental

First principles and fundamental parameters

Many observables.

- Kinematic reach.
- Perturbative approximations.
- Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.

H. Moutarde

Differential studies: physical models and numerical methods.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design

- Features Examples
- Architecture

Conclusion

- Experimental data and phenomenology Need for
 - modularity
- Computation of amplitudes

Many observables.

- Kinematic reach.
- Perturbative approximations.
 - Physical models.

Fits.

- Numerical methods.
- Accuracy and speed.

H. Moutarde

Differential studies: physical models and numerical methods.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design
- Features Examples
- Architecture

Conclusion

- Experimental data and phenomenology Need for modularity
- Computation of amplitudes

First principles and fundamental parameters

Many observables.

- Kinematic reach.
- Perturbative approximations.
- Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.

H. Moutarde

Differential studies: physical models and numerical methods.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design
- Features Examples
- Architecture

Conclusion

- Experimental data and phenomenology Need for
 - modularity
- Computation of amplitudes

First principles and fundamental parameters

Many observables. Kinematic reach.

- Perturbative approximations.
 - Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.

H. Moutarde

Towards the first release. Currently: tests, benchmarking, documentation, tutorials.

PARTONS Framework

- 3 stages:
 - 1 Design.
 - 2 Integration and validation.
 - 3 Benchmarking and production.

Imaging Experimental access DVCS kinematics Towards 3D images

Motivation

Modeling

- Limitations Lorentz symmetry Radon transform
- Covariant extension

Computing

- Design
- Features Examples
- Architecture

Conclusion

- Flexible software architecture.
 - B. Berthou *et al.*, *PARTONS: a computing platform for the phenomenology of Generalized Parton Distributions* arXiv:1512.06174, *to appear in Eur. Phys. J. C.*
 - 1 new physical development = 1 new module.
- Aggregate knowledge and know-how:
 - Models
 - Measurements
 - Numerical techniques
 - Validation
- What can be automated will be automated,

H. Moutarde Nucleon Tomography 2017 26 / 44

Systematic studies made easy. A faster and safer way to GPD phenomenology.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

Automation allows...:

- to run **numerous computations** with various physical assumptions,
- to run **nonregression** tests.
- to perform **fits** with various models.
- physicists to focus on physics!

Without PARTONS

With PARTONS

OF LA RECARRONE À L'INDUST

GPD computations made fast.

Improved performances thanks to clever architecture design.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design
- Features
- Examples
- Architecture

Conclusion

GPD computations with or without threads

PARTONS → △ ● Hervé MOUTARDE	1
# elementary_utils	
# general	
ĒQ	

Systematic studies made fast (1/2). What can be done from scratch in about 1 hour.

PARTONS Framework

From D. Sokhan's talk, EIC User Group Meeting, ANL, 2016

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples

Examples Architecture

Conclusion

H. Moutarde Nucleon Tomography 2017 29 / 44

Systematic studies made fast (2/2). EIC observables computed with different pQCD assumptions.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples Architecture

Conclusion

(Preliminary) $A_{ m LU}(90^\circ)$ at LO with Goloskokov-Kroll model

Colaneri, Work in progress

A (1) > A (1) > A

H. Moutarde | Nucleon Tomography 2017 | 30 / 44

GPD or CFF fits (1/2). Local fit of CFFs.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design
- Features
- Examples
- Architecture

Conclusion

First local fit of pseudo DVCS data, Sep. $26^{\rm th}$, 2016

	Mattermost
PARTONS :	partons_fits → 7 🎍 Search @
@ partons_fits	Mon, Sep 26, 2016
@ partons_tests	pawel 3:16 PM
	·
@ partons_visualization	FCN=1.00128e-11 FROM MIGRAD STATUS=CONVERGED 44 CALLS 45 TOTAL
@ radon-inverse	EDM=2.00186e-11 STRATEGY= 1 ERROR MATRIX ACCURATE
@ short_distance	EXT PARAMETER STEP FIRST
@ Town Square	1 fit_CFF_H_Re 6.67247e-02 1.34241e+00 2.92531e-05 -7.02262e-07
@ trello	2 fit_CFF_H_Im 1.24231e+01 1.07342e+00 1.80608e-05 1.71071e-04 3 fit_CFF_F_Re3 94789e+00 fixed
@ virtual_machine	4 fit_CFF_E_Im -1.64116e-01 fixed
More	5 fit_CFF_Ht_Re 1.54183e+00 fixed 6 fit_CFF_Ht_Im 2.59017e+00 fixed
PRIVATE GROUPS +	7 fit_CFF_Et_Re 5.41102e+01 fixed 8 fit CFF Et Im 3.79052e+01 fixed
⊜ Gitlab	EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=1
	1.804e+00 7.961e-03 7.961e-03 1.153e+00
DIDDET MEECLERE	PARAMETER CORRELATION COEFFICIENTS
DIRECT MESSAGES	NO. GLOBAL 1 2
e- bryan	2 0.00552 0.006 1.000
ex cearic	
- abinosi	The first reasonable fit with PARTONS_Fits! 12 AUL and 12 ALU asymmetries fitted together.
«х јакир	The true values of fit_CFF_H_Re and fit_CFF_H_Im are 0.06672466940113253 and
& luca	12.423114181138908
😓 nchouika	
& pawel	Write a message
• ההההדה	Sznajder
	Work in progress
	H Meuterde Nuclean Temerranhu 2017 21 / 44

<u>GPD or CFF fits (2/2).</u> Global fit of CFFs: border function formalism.

PARTONS Framework

(Preliminary) On-going global fit of Jefferson Lab DVCS data

 Kinematic cuts: O² > 1.5 GeV² $-t/O^2 < 0.2$

where we can relay on LO approximation where we can relay on GPD factorization

- χ2 / nPoints: 3317.1 / 3433 ≈ 0.97
- x2 / nPoints per data set:

Experiment	Reference	Observables	N points all	N points selected	chi2	chi2/nPoints
Hall A	[1] KINX2	συυ	120	120	103.2	0.86
Hall A	[1] KINX2	ΔσLU	120	120	98.8	0.82
Hall A	[1] KINX3	σUU	108	108	223.1	2.07
Hall A	[1] KINX3	ΔσLU	108	108	107.3	0.99
CLAS	[2]	συυ	1933	1333	1215.2	0.91
CLAS	[2]	ΔσLU	1933	1333	1171.4	0.88
CLAS	[3]	AUL, ALU, ALL	498	305	341.9	1.12

					11 Db//c Day C 02 055202 (2015)
	GPD	Parameter	Value	Error	[2] Phys. Rev. Lett. 115, 212003 (2015)
	н	Cu val	1.21	fixed	[3] Phys. Rev. D 91, 052014 (2015)
	н	Cu sea	1.27	fixed	
	н	Cd val	1.20	fixed	
	н	Cd sea	1.27	fixed	skewness
	Htilde	Cu val	1.07	fixed	function
المحمد ال	Htilde	Cu sea	1.06	fixed	
a nilea	Htilde	Cd val	1.11	fixed	
ers:	Htilde	Cd sea	1.07	fixed	2.
	н	a val	0.74	fixed	Degree like
	н	a sea	53.4	69.8	slopes
	Htilde	a val	2.88	0.35	Siopes
	Htilde	a sea	0.41	0.66	2.
	н	C sub	-1.38	0.15	subtraction
	н	a sub	0.21	0.34	constant Sznajder
	E	N	-7.38	0.44	CEE F and F 14/ /
	Etilde	N	-0.54	0.05	VVork in progress

H. Moutarde

Nucleon Tomography 2017 32 / 44

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

- Limitations Lorentz symmetry
- Radon transform Covariant extension

Computing

Design

- Features
- Examples
- Architecture

Conclusion

Fixed an paramete

Towards the first release. Debugging and flexibility: the path to controlled results.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

Design Features Examples

Conclusion

Ces

GPD computing made simple. Each line of code corresponds to a physical hypothesis.

PARTONS		gpdExample()				
Framework	1	// Lots of includes				
	2	#include $<$ src/Partons h>				
Motivation	3					
Imaging	4	// Retrieve GPD service				
Experimental access	5	GPDService* pGPDService = Partons::getInstance()->getServiceObjectRegistry				
DVCS kinematics		()->getGPDService();				
Towards 3D images	6	// Load GPD module with the BaseModuleFactory				
Modeling	7	GPDModule* pGK11Model = Partons::getInstance()->getModuleObjectFactory				
Limitations		()->newGPDModule(GK11Model::classId);				
Radon transform	8	// Create a GPDKinematic(x, xi, t, MuF, MuR) to compute				
Covariant extension	9	GPDKinematic gpdKinematic(0.1, 0.00050025, -0.3, 8., 8.);				
Computing	10	// Compute data and store results				
Design	11	GPDResult gpdResult = pGPDService ->				
Features		computeGPDModelRestrictedBvGPDTvpe(gpdKinematic, pGK11Model,				
Examples		GPDTvpe··ALL)				
Architecture	12	// Print_results				
Conclusion	13	stdcout << gpdResult toString() << stdendl				
	1/	stancout ((Spanosattiosting() (Stancial,				
	15	delete pCK11Model:				
	15	pCK11Model - 0				
	10					

GPD computing automated. Each line of code corresponds to a physical hypothesis.

PARTONS		computeOneGPD.xml
Framework	1	xml version="1.0" encoding="UTF-8" standalone="yes" ?
	2	<pre><scenario date="" description="Example_:_computation_of_one_GPD</pre></td></tr><tr><td>Motivation</td><td></td><td><math>_model_{\sqcup}(GK11)_{\sqcup}without_{\sqcup}evolution" id="01"></scenario></pre>
Incominant	3	</math Select type of computation $>$
Imaging	4	<task service="GPDService" method="computeGPDModel">
DVCS kinematics	5	Specify kinematic
Towards 3D images	6	<kinematics type="GPDKinematic"></kinematics>
Modeling	7	<param name="x" value="0.1"/>
Limitations	8	<param name="xi" value="0.00050025"/>
Lorentz symmetry	9	<param name="t" value="-0.3"/>
Radon transform Covariant extension	10	<pre><param name="MuF2" value="8"/></pre>
	11	<param name="MuR2" value="8"/>
Computing	12	
Features	13	</math Select GPD model and set parameters $>$
Examples	14	<computation_configuration></computation_configuration>
Architecture	15	<module type="GPDModule"></module>
Conclusion	16	<param name="className" value="GK11Model"/>
	17	
	18	
	19	
	20	

GPD computing automated. Each line of code corresponds to a physical hypothesis.

PARTONS		computeOneGPD.xml					
Framework	1	xml version="1.0" encoding="UTF-8" stand</td <td>$H^{\mu} = 0.822557$</td>	$H^{\mu} = 0.822557$				
	2	<scenario <math="" date="" description="Exam</th><th>n = 0.022551</th></tr><tr><th>Motivation</th><th></th><th><math>_</math>model<math>_(GK11)</math><math>_</math>without<math>_</math>evolution" id="01">></scenario>	$H^{u(+)} = 0.165636$				
Imaging	3	</math Select type of computation $>$	$H^{u(-)} - 147948$				
Experimental access	4	<task gpdkinematic"="" method="con</th><th>11 () = 1.47940</th></tr><tr><th>DVCS kinematics</th><td>5</td><td><! Specify kinematic></td><td></td></tr><tr><th>Towards 3D images</th><td>6</td><td><pre><kinematics type=" service="GPDService"><td>$H^d = 0.421431$</td></task>	$H^d = 0.421431$				
Modeling	7	<param]<="" name="x" th="" value="0.1"/> <th></th>					
Limitations	8	<param <="" name="xi" t"="" td="" value="-0.3"/> <td>$H^{d(-)} = 0.762344$</td>	$H^{d(-)} = 0.762344$				
Radon transform Covariant extension	10	<param <="" name="MuF2" td="" value="8"/> <td></td>					
Computing	11	<param <="" name="MuR2" th="" value="8"/> <th></th>					
Design	12		$H^{s} = 0.00883408$				
Features	13	Select GPD model and set parameter</td <td>1/5(+) 0.0176600</td>	1/5(+) 0.0176600				
Examples	14	<computation_configuration></computation_configuration>	$H^{3(1)} \equiv 0.0170082$				
Architecture	15	<module type="GPDModule"></module>	$H^{s(-)} = 0$				
Conclusion	16	<param name="className" th="" va<=""/> <th>-</th>	-				
	17						
	18		$H^{g} = 0.385611$				
	19		and E Ũ Ē				
	20		anu <i>L</i> , <i>H</i> , <i>L</i> ,				

 $C \rho Z$

CFF computing automated. Each line of code corresponds to a physical hypothesis.

		computeOneCFF.xml
PARTONS	1	xml version="1.0" encoding="UTF-8" standalone="yes" ?
Traffiework	2	<pre><scenario date="" description="Example_:_computation_of_one_</pre></td></tr><tr><td></td><td></td><td><math>convol_{\sqcup}coeff_{\sqcup}function_{\sqcup}model_{\sqcup}(DVCSCFF)_{\sqcup}with_{\sqcup}GPD_{\sqcup}model_{\sqcup}(GK11)" id="03"></scenario></pre>
Motivation	3	<task <="" method="</td></tr><tr><td>Imaging</td><td></td><td>computeWithGPDModel" service="ConvolCoeffFunctionService" td=""></task>
Experimental access	4	<kinematics type="DVCSConvolCoeffFunctionKinematic">
DVCS kinematics	5	<param name="xi" value="0.5" $/>$
Towards 5D Images	6	<param name="t" value="-0.1346" $/>$
Modeling	7	<param name="Q2" value="1.5557" $/>$
Limitations	8	<param name="MuF2" value="4" $/>$
Radon transform	9	<param name="MuR2" value="4" $/>$
Covariant extension	10	
Computing	11	<computation_configuration></computation_configuration>
Design	12	<module type="GPDModule"></module>
Features	13	<param name="className" value="GK11Model" $/>$
Architecture	14	
Conclusion	15	<pre><module type="DVCSConvolCoeffFunctionModule"></module></pre>
Conclusion	16	<param name="className" value="DVCSCFFModel" $/>$
	17	<param name="qcd_order_type" value="LO"/>
	18	
	19	
	20	< □ > <∄ > < ≥ > < ≥ > <

H. Moutarde | Nucleon Tomography 2017 | 36 / 44

C02

CFF computing automated. Each line of code corresponds to a physical hypothesis.

		comp	uteOneCFF.xml			
PARTONS	1	xml version="1.0" encoding="UTF-8" standalone="yes" ?				
Traffiework	2	<scenario date="" description="Example_:_computation_of_one_</td></tr><tr><td></td><td></td><td><math>convol_{\sqcup}coeff_{\sqcup}function_{\sqcup}model_{\sqcup}(convol_{\bot}coeff_{\bot}function_{\bot}model_{\bot})</math></td><td><math>({\tt DVCSCFF})_{\sqcup}{\tt with}_{\sqcup}{\tt GPD}_{\sqcup}{\tt model}_{\sqcup}({\tt GK11})" id="03"></scenario>				
Motivation	3	<task <="" method="</td></tr><tr><td>Imaging</td><td></td><td>computeWithGPDModel" service="ConvolCoeff]</td><td>FunctionService" td=""><td></td></task>				
Experimental access	4	<kinematics type="DVCSC</td><td><math>{\tt ConvolCoeffFunctionKinematic" }=""></kinematics>				
DVCS kinematics	5	<param <="" name="xi" td=""/> <td>value="0.5" /></td>	value="0.5" />			
Towards 3D Images	6	<param name="t" td="" v<=""/> <td>value="-0.1346" /></td>	value="-0.1346" />			
Modeling	7	<param <="" name="Q2" p=""/>	value="1.5557" />			
Limitations	8	<param name="MuF</td><td>2" value="4"/>				
Radon transform	9	<param name="MuR</td><td>2" value="4"/>				
Covariant extension	10					
Computing	11	<computation_configurat< td=""><td>ion></td></computation_configurat<>	ion>			
Design	12	<module type="GPD</td><td>Module"></module>				
Features	13	<param name="cla</td><td><code>ssName" value="GK11Model"/>				
Examples	14					
Architecture	15	<module c]<="" td="" type="DVCSCo</td><td><math>\mathcal{H} = 1.47722 + 1.766987</math></td></tr><tr><td>Conclusion</td><td>16</td><td><param name="><td>$\mathcal{E} = 0.12279 + 0.512312 i$</td></module>	$\mathcal{E} = 0.12279 + 0.512312 i$			
	17	<param name="q</td> <td></td>				
	18		H = 1.54911 + 0.953728 i			
	19	<td>$\tilde{\mathcal{E}} = 18\ 8776\ +\ 3\ 75275\ i$</td>	$\tilde{\mathcal{E}} = 18\ 8776\ +\ 3\ 75275\ i$			
	20		E 10.0110 + 0.10210 1			
			H. Moutarde Nucleon Tomography 2017 36 / 44			

OF LA RECARRENT À L'INDUSTR

Observable computing automated. Each line of code corresponds to a physical hypothesis.

		computeManyKinematicsOneModel.xml
PARTONS	1	<pre><scenario date="2016-10-18" description="Use_kinematics_list"></scenario></pre>
Framework	2	<task method="</td></tr><tr><td></td><td></td><td>computeManyKinematicOneModel" service="ObservableService" storeindb="1"></task>
Motivation	3	<pre><kinematics type="ObservableKinematic"></kinematics></pre>
Imaging	4	<pre><pre>cparam name="file" value="observable kinematics.dat" /></pre></pre>
Experimental access	5	
DVCS kinematics	6	<computation configuration=""></computation>
Towards 3D images	7	<module type="Observable"></module>
Modeling	8	<pre>charam name="className" value="Alu" /></pre>
Limitations	a	
Lorentz symmetry	10	<module type="DVCSModule"></module>
Covariant extension	11	<pre>chicage broshoad > /> /> /> /> /></pre>
Commuting	12	<pre>cparam name="beam energy" value="1066" /></pre>
Design	12	/module>
Features	14	<pre><module type="DVCSConvolCoeffFunctionModule"></module></pre>
Examples	14	
Architecture	15	<pre><pre>cparam name="className" value="DVCSCFFMode1" /></pre></pre>
Conclusion	16	$<$ param name="qcd_order_type" value="LO" $/>$
conclusion	17	
	18	<module type="GPDModule"></module>
	19	<param name="className" value="GK11Model" $/>$
	20	
	21	
		H. Moutarde Nucleon Tomography 2017 37 / 44
DE LA RECAERCAE À L'INDUSTR

Observable plotting automated. Plot production is automated too!

		QueryDatabaseObservablePlotFile.xml			
PARTONS	1	xml version="1.0" encoding="UTF-8" standalone="yes" ?			
Framework	2	<scenario date="2016-10-18" description=""></scenario>			
	3	</math Generate plot file from database for GK model $>$			
Motivation	4	<task method="generatePlotFile" service="ObservableService"></task>			
Imaging	5	<task_param type="output"></task_param>			
Experimental access	6	<param <="" name="filePath" td="" value="observable_GK11_plot.csv"/>			
DVCS kinematics		>			
Towards 3D Images	7				
Modeling	8	</math Variables of 2d plot $>$			
Limitations	9	<task_param type="select"></task_param>			
Radon transform	10	<param name="xPlot" value="phi" $>$			
Covariant extension	11	$<$ param name="yPlot" value="observable_value" $/>$			
Computing	12				
Design	13	</math Select results in database $>$			
Features	14	<task_param type="where"></task_param>			
Architecture	15	<param name="xB" value="0.1763"/>			
Conclusion	16	<pre><param name="t" value="-0.1346"/></pre>			
	17	<pre><pre>content of the second secon</pre></pre>			
	18	<pre><param name="computation_id" value="2"/></pre>			
	19				
	20				
	21	< □ > < @ > < ≥ > < ≥ > < ≥ > < ≥ > < > < > < > <			
		H. Moutarde Nucleon Tomography 2017 38 / 44			

OF LA RECARDAR À L'INDUSTR

Observable plotting automated. <u>Plot production is automated too!</u>

		QueryE	DatabaseO	bservablePlotFile.xml			
PARTONS	1	xml version="1.0" encoding="UTF-8" standalone="ves" ?					
Trainework	2	<scenario date="2016-10-18" description=""></scenario>					
	3	</math Generate plot file from database for GK model $>$					
Motivation	4	<task method="generatePlotFile" service="ObservableService"></task>					
Imaging	5	<task_param th="" typ<=""><th>e="output"</th><th>></th><th></th></task_param>	e="output"	>			
Experimental access	6	<param nam<="" th=""/> <th>e="filePath</th> <th>" value="observable_GK11_plot.csv'</th> <th>" /</th>	e="filePath	" value="observable_GK11_plot.csv'	" /		
DVCS kinematics Towards 3D images		>					
Madallan	7	$$					
Limitations	8	</math Variables of 2d plot $>$					
Lorentz symmetry	9	<task_param th="" ty<=""><th></th><th></th><th></th></task_param>					
Radon transform	10	<param nar	ϕ [deg]	A _{LU}			
Covariant extension	11	<param nar	0.	0.			
Computing	12	$$	10	0.004726075012605100			
Design	13	Select re</th <th>10.</th> <th>0.024730075012005108</th> <th></th>	10.	0.024730075012005108			
Examples	14	<task_param th="" ty<=""><th>20.</th><th>0.048810639423911277</th><th></th></task_param>	20.	0.048810639423911277			
Architecture	15	<param nar<="" th=""/> <th>30</th> <th>0 0715723361211///678</th> <th></th>	30	0 0715723361211///678			
Conclusion	16	<param nar<="" th=""/> <th>50.</th> <th>0.071572550121144070</th> <th></th>	50.	0.071572550121144070			
	17	<param nar<="" th=""/> <th></th> <th></th> <th></th>					
	18	<param nar<="" th=""/> <th>350.</th> <th>-0.024736075012605111</th> <th></th>	350.	-0.024736075012605111			
	19		260	0.0547074402160650- 17			
	20		300.	-9.054/0/44031080586-1/			
	21				ۍ (»		

Fit parameterization. Save time for physics analysis!

		FitScenario.xml				
PARTONS	1					
Framework	2	</math 2nd step : kinematic cuts $>$				
	3	<task method="defineKinematicCuts" service="FitsService"></task>				
Motivation	4	<pre><kinematics type="kinematicCuts"></kinematics></pre>				
Imaging	5	<pre><param name="list" value="-t/Q2_lt_0.2;_Q2_gt_1.5"/></pre>				
Experimental access	6					
DVCS kinematics	7					
Towards 3D Images	8					
Modeling	9	5th step : Fitting Ansatz				
Limitations	10	<task method="configureFitsModule" service="FitsService"></task>				
Radon transform	11	<computation_configuration></computation_configuration>				
Covariant extension	12	<module name="Partons0117FitsModel" type="FitsModelModule"></module>				
Computing	13	3				
Design	14					
Features	15					
Examples	16	<				
Architecture Conclusion	17	<pre><task method="configureMinimizerModule" service="FiteService"></task></pre>				
	10	<pre><computation configuration=""></computation></pre>				
	18	< computation_configuration >				
	19	<module name="ROOTMinimizer" type="MinimizerModule"></module>				
	20	$<$ param name="root_minimizer_package_name" value="Minuit" $/>$				
	21					
	22					
		H. Moutarde Nucleon Tomography 2017 39 / 44				

Modularity.

Inheritance, standardized inputs and outputs.

40 / 44

Examples

Architecture

Conclusion

- Steps of logic sequence in parent class.
- Model description and related mathematical methods in daughter class.

H. Moutarde Nucleon Tomography 2017

Modularity and automation. Parse XML file, compute and store result in database.

H. Moutarde | Nucleon Tomography 2017 | 41 / 44

イロト イポト イヨト イヨト

Conclusion

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Conclusions and prospects. Towards a unifying framework for GPD studies.

PARTONS Framework

Motivation

Imaging

Experimental access DVCS kinematics Towards 3D images

Modeling

Limitations Lorentz symmetry Radon transform Covariant extension

Computing

- Design Features
- Examples
- Architecture

Conclusion

- **Challenging constraints** expected from Jefferson Lab in valence region and later from EIC in gluon sector.
- **Good theoretical control** on the path between GPD models and experimental data.
- Success of physics program requires new GPD models with proper implementations of symmetries.
- Development of the PARTONS framework for phenomenology and theory purposes.
- **Fitting engine** ready for local fits. Global fits *in progress*.
- **First release** of PARTONS... as soon as possible!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Commissariat à l'énergie atomique et aux énergies alternatives DSM Centre de Saclay | 9119) Gif-sur-Yvette Cedex Irfu T, +330(19 60 67 38 | F, +330(1) 60 68 78 84 SPINI

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 685 01

####