Experimental TMD Program at JLab

Jian-ping Chen, Jefferson Lab, Virginia, USA 3-D Modeling Workshop @ JLab, March, 2017

- Introduction
- TMDs: 3-D Structure of the Nucleon in Momentum Space Spin-Flavor, Orbital Angular Momentum Transeversity and Tensor Charge Sivers, Worm-Gear, Pretzelosity
- JLab Multi-Hall Program
- > Hall C: Cross Sections, L/T separation, P_T study
- Hall B: Medium luminosity/large acceptance, general survey,
- Hall A/SBS: pi and Kaon, large x/Q2
- Hall A/SoLID: High luminosity/large acceptance with polarized n/p Precision 4-d mapping of TMD asymmetries
- Summary

Thanks to my colleagues for help with slides: H. Avagyan, M. Cantalbrigo, E. Cisbani, R. Ent, H. Gao, D. Gaskell, T. Liu, A. Prokudin, A. Puckett, ...

Introduction

TMDs: Transverse Structure of Nucleon in Momentum Space

□ Wigner distributions (Belitsky, Ji, Yuan)

Leading-Twist TMD PDFs

TMDs

8 functions in total (at leading Twist)

Each represents different aspects of partonic structure

Each function is to be studied

Mulders, Tangerman (1995), Boer, Mulders (1998)

Alexei Prokudin

Tool: Semi-inclusive DIS (SIDIS)

e

e

Scattering Plane

 \vec{P}_h

Gold mine for TMDs

U

d

d

 Access all eight leading-twist TMDs through spin-comb. & azimuthalmodulations

d

Ū

Tagging quark flavor/kinematics

Explore TMD with JLab 6 GeV

- Demonstrate Feasibility
- Initial study on P_T spin-flavor dependence
- First measurements with transversely polarized ³He (neutron)

Is JLab Energy High Enough?

- To extract TMDs from SIDIS, more demanding in energy than in DIS
- Is JLab 12 GeV and/or 6 GeV energy high enough?

Hall C E00-108 Exp. $e + LH_2/LD_2 \rightarrow e' + \pi + /\pi - + X$

Ebeam=5.5 GeV

Low Energy SIDIS xsec reproduced by calculation using high energy parameters and PDF

From Form Factors to Transverse Densities

Unpolarized Transverse Densities

Flavor-dependence in form factors can be translated into flavor-dependence of transverse densities

Unpolarized TMD: Flavor P_T Dependence?

Flavor in transverse-momentum space

A. Bacchetta, Seminar @ JLab, JHEP 1311 (2013) 194

Flavor P_T Dependence from Theory

Chiral quark-soliton model (Schweitzer, Strikman, Weiss, JHEP, 1301 (2013)
 > sea wider tail than valanee

Pioneering lattice-QCD studies hint at a down distribution being wider than up

Flagmentation model, Matevosyan, Bentz, Cloet, Thomas, PRD85 (2012) → unfavored pion and Kaon wider than favored pion

Hall C Results: Flavor P_T Dependence

First indications from experiments

no kaons, no sea, no *x-z* dependence $(\mu_d)^2$ (μ_)² 0.080.2 $\left[\mu_{d}\right)^{2}$ [(GeV/c)²] $\left[\left(\mathrm{GeV/c}\right)^2\right]$ 0.18 0.03 0.16 + -0.02 $(\mu)^2$ 0.1 C) -0.07 0.18 0.2 0.05 0.1 0.15 0.22 0.16(µ_)² [(GeV/c)²] $(\mu_{\lambda})^{2}$ [(GeV/c)²] $(\mu_{+})^{2}$ $(\mu_u)^2$

Conclusion: up is wider than down and favored wider than unfavored

Hall A SIDIS Cross Section Results From E06-010 (Transversity):

pi+ and pi- production on He3 X. Yan *et al.*, Hall A Collaboration, arXiv:1610.02350, Accepted by PRC

Hall A Results: Transverse Momentum dependence

average quark transverse momentum distribution squared vs. average quark transverse momentum in fragmentation squared

with modulation

no modulation

CLAS data suggests that width of g_1 is less than the width of f_1

Planned Precision TMD Studies with JLab 12

Multi-Hall Program, SoLID

Precision Study of TMDs: JLab 12 GeV

- Explorations: HERMES, COMPASS, RHIC-spin, JLab6,...
- From exploration to precision study
 JLab12: valence region
 Transversity: fundamental *PDF*s, tensor charge
- TMDs: 3-d momentum structure of the nucleon
 - \rightarrow information on quark orbital angular momentum
 - \rightarrow information on QCD dynamics
- Multi-dimensional mapping of TMDs
- Precision \rightarrow high statistics
 - high luminosity and/or large acceptance

JLab 12: Multi-Halls TMD Program

H₂/D₂, NH₃/ND₃, HD

The Multi-Hall SIDIS Program at 12 GeV

M. Aghasyan, K. Allada, H. Avakian, F. Benmokhtar, E. Cisbani, J-P. Chen, M. Contalbrigo, D. Dutta, R. Ent, D. Gaskell, H. Gao, K. Griffioen, K. Hafidi, J. Huang, X. Jiang, K. Joo, N. Kalantarians, Z-E. Meziani, M. Mirazita, H. Mkrtchyan, L.L. Pappalardo, A. Prokudin, A. Puckett, P. Rossi, X. Qian, Y. Qiang, B. Wojtsekhowski

JLab SIDIS working group

The complete mapping of the multi-dimensional SIDIS phase space will allow a comprehensive study of the TMDs and the transition to the perturbative regime.

<u>Flavor separation</u> will be possible by the use of different target nucleons and the detection of final state hadrons.

<u>Measurements with pions and kaons</u> in the final state will also provide important information on the hadronization mechanism in general and on the role of spinorbit correlations in the fragmentation in particular.

<u>Higher-twist effects</u> will be present in both TMDs and fragmentation processes due to the still relatively low Q² range accessible at JLab, and can apart from contributing to leading-twist observables also lead to observable asymmetries vanishing at leading twist. These are worth studying in themselves and provide important information on quark-gluon correlations.

Hall C – Cross Sections in SIDIS

Cross section measurements with magnetic focusing spectrometers (HMS/SHMS) will play important role in JLab SIDIS program

- → Demonstrate understanding of reaction mechanism, test factorization
- → Able to carry out precise comparisons of charge states, π +/ π -

at small P_T , access to large SHMS/HMS will allow precise L-T separations \rightarrow Does $R_{DIS} = R_{SIDIS}$?

> Measure P_T dependence to access k_T depedence of parton distributions

 $\mathbf{O} = \sum_{q} e_{q}^{2} f(x) \otimes D(z)$

Hall C SIDIS Program – HMS+SHMS+NPS

Courtesy R. Ent

CLAS12: Evolution and k_{T}-dependence of TMDs

Overview of SoLID

Solenoidal Large Intensity Device

• Full exploitation of JLab 12 GeV Upgrade

→ A Large Acceptance Detector AND Can Handle High Luminosity (10^{37} - 10^{39}) Take advantage of latest development in detectors , data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-*x* region and threshold J/ ψ

•5 highly rated experiments approved

Three SIDIS experiments, one PVDIS, one J/ ψ production (+ 3 run group experiments)

•Strong collaboration (250+ collaborators from 70+ institutes, 13 countries) Significant international contributions (Chinese collaboration)

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He, **rating A**

E12-11-007: Single and Double Spin Asymmetries on ³He, rating A

E12-11-108: Single and Double Spin Asymmetries on Transverse Proton, rating A

Two run group experiments: DiHadron and Ay

Key of SoLID-Spin program:
Large Acceptance
+ High Luminosity
→ 4-D mapping of asymmetries
→ Tensor charge, TMDs ...
→ Lattice QCD, QCD Dynamics, Models.

Collins Asymmetry: Transversity

Transverse Spin, Tensor Charge

JLab E06-010 collaboration, X. Qian at al., PRL 107:072003(2011)

Blue band: model (fitting) uncertainties **Red band**: other systematic uncertainties

Accessing transversity in dihadron production at JLab

Measurements with polarized neutrons $A_{UT}(\phi_R, \theta) = \frac{1}{fP_t} \frac{(N^+ - N^-)}{(N^+ + N^-)}$ 0.15 ▲ CLAS12 (^s∳+^u∲)u, LD 0.1 **¥** (projected) 0 -0.02 0.075 -0.04 0.05 sin_d_R UT 80.08 -0.06 0.025 SoLID 0 (projected) -0.1 0.75 0.5 0.2 0.25 0.5 0.75 0.5 1 0.2 M_h M_h z Z Х 0.8 (h₁-h₁/4)/(u+d/4) 0.6 $\frac{H_{1,sp}^{\triangleleft,u}(z,M_h)[4h_1^u - h_1^d(x)]}{D_1^u(4f_1^u + f_1^d)}$ ecqm 0.4 0.2 ected PASS RMES

0.2

0.3

0.4

0.5

0.6

Х

0

0.1

Measurements with polarized protons

$$\frac{H_{1,sp}^{\triangleleft,u}(z,M_{\pi\pi}) \left(4h_1^d(x)-h_1^u(x)\right)}{D_1^u(z,M_{\pi\pi}) \left(4f_1^d(x)+f_1^u(x)\right)}$$

1

SoLID

0.5

Х

0.25

Transversity from SoLID

- Collins Asymmetries ~ Transversity (x) Collin Function
- Transversity: chiral-odd, not couple to gluons, valence behavior, largely unknown
- Global model fits to experiments (SIDIS and e+e-)
- SoLID with trans polarized n & $p \rightarrow$ Precision extraction of u/d quark transversity
- Collaborating with theory group (N. Sato, A. Prokudin, ...) on impact study

Z. Ye et al., PLB 767, 91 (2017)

Tensor Charge from SoLID

- Tensor charge (0th moment of transversity): fundamental property Lattice QCD, Bound-State QCD (Dyson-Schwinger) , ...
- SoLID with trans polarized n & p → determination of tensor charge

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and EDM

$$d_n = \delta_T u \, d_u + \delta_T d \, d_d + \delta_T s \, d_s$$

current neutron EDM limit

 $|d_n| < 2.9 \times 10^{-26} \, e \cdot \mathrm{cm}$

Sivers Function

3-D Imaging, QCD dynamics

Access to 3D imaging

$$f(x, \mathbf{k}_T, S) = f_1(x, \mathbf{k}_T^2) - \frac{[\mathbf{k}_T \times P] \cdot S_T}{M} f_{1T}^{\perp}(x, \mathbf{k}_T^2)$$

Sivers function from experimental data HERMES and COMPASS

Anselmino et al 2005

Dipole deformation

JLab6: ³He (n) Target Single-Spin Asymmetry in SIDIS

E06-010 collaboration, X. Qian at al., PRL 107:072003(2011)

Blue band: model (fitting) uncertainties **Red band**: other systematic uncertainties

Hall A SBS Projection: pi/K Sivers

11 GeV SIDIS: Expected Effects

Mapping Sivers Asymmetries with SoLID

- Sivers Asymmetries ~ Sivers Function (x, k_T, Q²) (x)
 Fragmentation Function (z, p_T, Q²)
- Leading-twist/not Q power suppressed: Gauge Link/ QCD
 Final State Interaction
- Transverse Imaging
- QCD evolutions
- SoLID: precision multi-d mapping
- Collaborating with theory group: impact study

Sivers Asymmetries

 P_T vs. x for one (Q^2 , z) bin Total > 1400 data points

Liu, Sato, Prokudin,...

What do we learn from 3D distributions?

 $f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$

What do we learn from 3D distributions?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

Nuclear Effect in 3He for neutron TMD Study

- Effective polarization
- PWIA
- FSI through distorted spectral function

Alessio Del Dotto et al., Few Body Syst. 56 (2015) 425-430 ; arXiv1602.06521 ; EPJ Web Conf. 113 (2016) 05010.

S

~1.5%

D

~8%

S

~90%

 \approx

³He

TMDs and Orbital Angular Momentum

Pretzelosity ($\Delta L=2$), Worm-Gear ($\Delta L=1$), Sivers: Related to GPD E through Lensing Function

Quark Orbital Angular Momentum

Nucleon spin $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$ = $\frac{1}{2}\Delta\Sigma + \frac{1}{2} + \Delta G + L_g$ Ji (gauge invariant) Jeffe-Manohar (light-cone)

- Spin Puzzle: missing piece, orbital angular momentum (OAM)
- Indirect evidence \rightarrow OAM is significant
- Lattice Calculation: u and d cancellation?

disconnected diagrams

Ji's sum rule:

$$J_{q,g} = \frac{1}{2} \int dx x \left(H_{q,g}(x,0,0) + E_{q,g}(x,0,0) \right) ,$$

measure GPDs to access the total angular momentum needs GPD E (and H) be measured in all x at fixed ξ DVCS only access GPDs @ x= ξ ridge experimentally difficult to measure GDPs at all x with fixed ξ , if not impossible DDVCS?

OAM and Parton Distributions

 How best to access/measure quark orbital angular momentum? Extensively discussed in the last decade or so
 X. Ji, et al., arXiv:1202.2843; 1207.5221

"Thus a partonic picture of the orbital contribution to the nucleon helicity necessarily involves parton's transverse momentum. In other words, TMD parton distributions are the right objects for physical measurements and interpretation."

Transversely polarized nucleon:
$$J_q = \frac{1}{2} \sum_i \int dx x \left[q_i(x) + E_i(x, 0, 0) \right]$$

- Longitudinally polarized nucleon: related to Twist-3 GPDs (more difficult?)
- Intuitive definition: L= r x p \rightarrow can be defined in Wigner Distributions

$$L(x) = \int (\vec{b}_{\perp} \times \vec{k}_{\perp}) W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) d^2 \vec{b}_{\perp} d^2 \vec{k}_{\perp} ,$$

access through both TMDs and GPDs possible direct measurement of Wigner distributions? J. Qiu, S. Liuti

- Parton spin-orbital correlations → transverse momentum TMDs provide direct information
- TMD information related to L_q and /or \mathcal{L}_q ?

Pretzelosity Results on Neutron (from E06-010)

Y. Zhang, et al., PRC 90 5, 055209(2014)

TMDs: Access Quark Orbital Angular Momentum

- TMDs : Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0, no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models
 Pretzelosity: ΔL=2 (L=0 and L=2 interference, L=1 and -1 interference)
 Worm-Gear: ΔL=1 (L=0 and L=1 interference)
- SoLID with trans polarized $n/p \rightarrow$ quantitative knowledge of OAM

SoLID Impact on Pretzelosity

C. Lefky et al., PR D 91, 034010 (2015).

95% C.L.

SoLID transversely polarized ³He, E12-10-006.

by Tianbo Liu (Duke & DKU)

Angular Momentum (1) T. Liu

OAM and pretzelosity:

model dependent

$$L_{z} = -\int dx \, d^{2} \, k_{\perp} \, \frac{k_{\perp}^{2}}{2 \, M_{p}^{2}} \, h_{1 \, T}^{\perp} (x, \, k_{\perp}^{2})$$

J. She et al., PR D 79, 058008 (2009).

SoLID impact:

6 GeV Exploration: Asymmetry A_{LT} Results

E06-010, J. Huang et al., PRL. 108, 052001 (2012).

To leading twist:

$$A_{\mathrm{LT}}^{\cos(\phi_h - \phi_s)} \propto F_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$$

Dominated by L=0 (S) and L=1 (P) interference

- neutron A_{LT} : Positive for π -
- Consist w/ model in signs, suggest larger asymmetry

Worm-Gear Trans helicity

Worm-gear Functions SoLID Projections

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
- No GPD correspondence
- Exploratory lattice QCD calculation: Ph. Hägler et al, EPL 88, 61001 (2009)

Light-Cone CQM by B. Pasquini B.P., Cazzaniga, Boffi, PRD78, 2008

SoLID Neutron Projections,

Angular Momentum (2)

K and η are fixed by anomalous magnetic moments κ^p and κ^n .

$$J = \frac{1}{2} \int dx \, x \, [\, H(x, 0, 0) + E(x, 0, 0) \,]$$

SoLID:

Summary

• TMDs:

transverse imaging transverse spin, tensor charge QCD dynamics access quark orbital angular momentum

• JLab-TMD Program

Multi-Hall to study TMDs from all directions Precision multi-dimensional mapping in the valence region

EIC will continue the study for sea quarks and gluons

→Understanding nucleon 3-d structure, study QCD dynamics, quark orbital angular momentum and more