HERA proton structure measurements

International Workshop on Physics with Positrons at Jefferson Lab

Outline

- Discussion of the HERA collider and detectors
- Measurements of inclusive DIS
- A few other selected HERA measurements

(Attempts are made to connect with JLEIC on some slides)

The HERA collider

- So far the only ep collider, operated 1992-2007
- 920 x 27.5 GeV (√s=318 GeV)
- Two collider experiments, H1 and ZEUS
- Integrated Luminosity:
 ~2×0.5 fb⁻¹
- e⁺p and e⁻p data

HERA compared to other machines

- At construction time: a machine at the energy frontier (E_p~Tevatron, E_e~ ½ LEP)
- Detectors designed for discoveries (e.g. leptoquarks or excited e), less so for low P_T physics
- Luminosity 1.5×10³¹cm⁻²s⁻¹ (Upgrade in 2001-2002: factor 5 improvement)
- Lepton beam polarisation by Sokolov-Ternov effect

The HERA detectors H1 and ZEUS

HERA inclusive measurements

- Select events with electron (neutral current) or with missing transverse momentum (charged current)
- Kinematic variables Q² and x-Bjorken
- Double-differential measurement of the reduced cross section σ_r
- Corrected for QED radiative effects
- Reduced cross sections: related to structure functions
- Case of lepton polarisation \rightarrow not discussed in this talk

Neutral current reduced cross section:

$$\frac{d^2 \sigma_{NC}^{\pm}}{dx \, dQ^2} \frac{Q^4 x}{2 \pi \alpha_+^{2Y}} = \sigma_{r,NC}^{\pm} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \, \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L$$

Charged Current reduced cross section: $\frac{d^2 \sigma_{CC}^{\pm}}{dx \, dQ^2} \frac{2 \pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 = \sigma_{r,WC}^{\pm} = Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} - y^2 W_L^{\pm}$ helicity factors: $Y_+ = 1 \pm (1 - y)^2$

JPOS17, September 2017

S.Schmitt, HERA proton structure

10 -1

10⁻⁷

HERA and Proton PDFs

х

JLEIC

-2

10

10⁻³

estimated range

 10^{-1}

 Inclusive cross sections probe proton parton density functions (PDFs) f_i(x,µ=Q)

- HERA: $0.05 < Q^2 < 10^5 \text{ GeV}^2$ and $10^{-6} < x < 0.6$
- Inclusive cross sections from HERA are the backbone of all modern PDF determinations, using DGLAP for NLO or NNLO QCD fits

 \rightarrow large impact on LHC physics

• JLEIC: overlap with HERA, expect substantial improvements at high x

 \rightarrow inclusive measurements are an important part of the JLEIC physics program

10⁻⁵

10⁻⁴

10⁻⁶

HERA kinematics for neutral current

- Kinematic variables: Q², x, y, Q²=sxy
- Determined using scattered electron and hadronic final state

- "Electron" method: $y=y_e$ and $p_T=p_{T,e}$
- Al low y, use $y=y_h$ (sigma method)
- Other methods: double-angle, etc

JPOS17, September 2017

Charged current kinematics

CC kinematics is reconstructed from hadrons alone: moderate resolution

- HERA CC analysis is limited to large p_{T,miss}≥15 GeV, or Q²≥200 GeV²
- Data-driven analysis of systematic effects: use neutral current events and remove the electron (at H1 called "pseudo-CC events")

Reminder: the HERA discovery

H1 and ZEUS

- At the time: a surprise
- Impressive improvement in precision – it took
 >20 years to achieve this

Shown here: F_2 (1993), reduced cross section (2015), as a function of x, in bins of Q^2

JPOS17, September 2017

HERA data analysed over two decades

- Measurements of inclusive NC and CC processes are published in a total of 41 H1 and ZEUS papers
- Data are combined to a uniform HERA dataset: EPJ C75 (2015) 12, 85
- Seven combined datasets:
 - Measurements of NC and CC for both e⁺p and e⁻p scattering at √s=318 GeV
 - Measurements of NC e⁺p scattering at reduced √s={225,252,300} GeV

	Data Set		$x_{\rm Bi}$ Grid		Q^2 [GeV ²] Grid		L	e^+/e^-	\sqrt{s}	$x_{\rm Bi}, Q^2$ from	Ref.
			from	to	from	to	pb^{-1}		GeV	equations	
	HERA I $E_p = 820$ GeV and $E_p = 920$ GeV data sets										
	H1 svx-mb[2]	95-00	0.000005	0.02	0.2	12	2.1	e^+p	301,319	13.17.18	[3]
	H1 low $Q^{2}[2]$	96-00	0.0002	0.1	12	150	22	e^+p	301, 319	13,17,18	[4]
	H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301	19	[5]
	H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	14	[5]
	H1 NC	98-99	0.0032	0.65	150	30000	16.4	$e^{-}p$	319	19	[6]
	H1 CC	98-99	0.013	0.40	300	15000	16.4	e^-p	319	14	[6]
	H1 NC HY	98-99	0.0013	0.01	100	800	16.4	$e^{-}p$	319	13	[7]
	H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	19	[7]
	H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319	14	[7]
	ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e^+p	300	13	[11]
	ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	13, 19	[12]
	ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	13	[13]
	ZEUS NC [2] high/low Q^2	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300	21	[14]
	ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300	14	[15]
	ZEUS NC	98-99	0.005	0.65	200	30000	15.9	$e^{-}p$	318	20	[16]
	ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e^-p	318	14	[17]
	ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318	20	[18]
	ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	318	14	[19]
	HERA II $E_n = 920 \text{ GeV}$ dat	a sets						- F			1
	H1 NC ^{1.5} <i>p</i>	03-07	0.0008	0.65	60	30000	182	$e^+ p$	319	13, 19	[8]1
	H1 CC ^{1.5p}	03-07	0.008	0.40	300	15000	182	e^+p	319	14	[8]1
	H1 NC ^{1.5} <i>p</i>	03-07	0.0008	0.65	60	50000	151.7	$e^{-}p$	319	13, 19	[8]1
	H1 CC $^{1.5p}$	03-07	0.008	0.40	300	30000	151.7	$e^{-}p$	319	14	[8]1
	H1 NC med $O^2 * y.5$	03-07	0.000086	0.005	85	00000	07.6		310	13	
	H1 NC low $Q^2 * y.5$	03-07	0.0000380	0.00032	2.5	12	50	$e^{+}p$	310	13	[10]
		06.07	0.000029	0.65	2.5	20000	125.5	e^{p}	219	12 14 20	[10]
	ZEUS NC $75p$	06.07	0.003	0.03	200	20000	133.5	e^{p}	210	13,14,20	[22]
	ZEUS CC 15	06-07	0.0078	0.42	280	30000	152	e p	318	14	[23]
	ZEUS NC 15	05-06	0.005	0.65	200	30000	109.9	e p	318	20	[20]
	ZEUS CC 1.5	04-06	0.015	0.65	280	30000	1/5	e p	318	14	
	ZEUS NC nominal	06-07	0.000092	0.008343	1	110	44.5	e^+p	318	13	[24]
	ZEUS NC satellite	06-07	0.000071	0.008343	5	110	44.5	<i>e</i> * <i>p</i>	318	13	[24]
HEKA II $E_p = 5/5$ GeV data sets											
	H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e^+p	252	13, 19	[9]
	H1 NC low Q^2	07	0.0000279	0.0148	1.5	90	5.9	<i>e</i> ⁺ <i>p</i>	252	13	[10]
	ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e^+p	251	13	[24]
	ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	<i>e</i> ⁺ <i>p</i>	251	13	[24]
	HERA II $E_p = 460 \text{ GeV}$ data sets										
	H1 NC high Q^2	07	0.00081	0.65	35	800	11.8	e^+p	225	13, 19	[9]
	H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	<i>e</i> ⁺ <i>p</i>	225	13	[10]
	ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e^+p	225	13	[24]
	ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225	13	[24]

The power of combining data

- A total of 2927 H1 and ZEUS measurements are averaged to about 1307 combined reduced cross sections
- Up to six measurements contribute to a single point
- Systematic uncertainties and their cross-correlations are handled consistently
- Better than 1.5% precision is reached over a wide kinematic range
- Excellent data consistency: $\chi^2/N_{D.F.} = 1687/1620$

function F₂

•

e clearly visible: cross

The HERA combined NC data

 Scaling violations of are clearly visible: cross section rises with Q² at low-x but drops with Q² at high-x

Shown here: reduced cross section at $\sqrt{s}=318$

GeV for e^+p and e^-p as a function of Q^2 .

Dominating contribution is from structure

- Gaps between fixed-target data and HERA measurements → JLEIC
- High Q² data precision is statistically limited
- Difference between e⁺p and e⁻p at high Q²: extract xF₃

Measurement of $xF_{3}^{\gamma Z}$

xF₃^{γ z}

х_{Вј} 14

- Structure function is nonzero due to the y/Z interference
- Data are extracted point-bypoint by subtracting e⁺p from e⁻p cross sections
- Extrapolate to Q²=1000 GeV² and average for each x
- Integrate over x: expect 5/3 from naive quark counting

data+extrapol

EPJ C75 (2015) 12, 85

JPOS17, September 2017

 $\left[\int_{0}^{1} \frac{xF_{3}^{\gamma Z}(x)}{x}\right]$

HERA measurements at high x

- High x can be measured only at high $Q^2 \rightarrow statistically limited$
- H1: largest x=0.65 is measured only for Q²≥1500 GeV² (x=0.4 for Q²≥650 GeV²)
- ZEUS: dedicated analysis to measure high x up to x=1 (bin-integrated cross section is quoted for last bin)
- Possibility to use these data in future PDF fits

High-y: Measurement of F_L

- Structure function F_{L} can be measured by combining $\delta_{010^8}^{*}$ datasets taken at different \sqrt{s} (Rosenbluth) $\delta_{010^7}^{*}$
 - $\sigma_{r,NC} = F_2 \frac{y^2}{Y_+} F_L, y = \frac{Q^2}{sx}$ $F_L \sim xg(x)$ [gluon density]
- Use HERA runs with reduced proton beam energy $E_p=460$ or 575 GeV, $\sqrt{s}=225$ or 252 GeV
- F_L is extracted from high y data: only a small area of the kinematic plane is accessible
- Using HERA+JLEIC data, F_L could be turned into a truly double-differential measurement covering a much wider x-range → gluon at high x& high Q²

Measurement of F_{L} at HERA

 $\Omega^2 = 2.5 \, \text{GeV}^2$

 $O^2 = 8.5 \text{ GeV}^2$

 $Q^2 = 25 \text{ GeV}^2$

 $\Omega^2 = 2.0 \, \text{GeV}^2$

 $O^2 = 6.5 \text{ GeV}^2$

 $Q^2 = 20 \text{ GeV}^2$

H1 Collaboration

 $O^2 = 5.0 \, GeV^2$

 $Q^2 = 15 \text{ GeV}^2$

 $O^2 = 3.5 \text{ GeV}^2$

 $Q^2 = 12 \text{ GeV}^2$

- Most precise HERA F_L data: H1
- Main ingredients: backward silicon tracker and dedicated trigger for low-energy electrons
- Double-differential extraction of F₁
- Average over the [small] accessible x-range in each Q^2 bin \rightarrow one-dimensional projection with Q^2 and x varying simultaneously
- H1 and ZEUS data are consistent within 2 sigma (errors are dominated by normalisation uncertainties)_{-0.2}

H1: Eur.Phys.J.C 74 (2014) 2814 ZEUS: Phys.Rev. D89 (2014), 072007

Gluon density from F₁

Gluon density determined from H1 F • measurement

$$xg(x,Q^2) \approx 1.77 \frac{3\pi}{2\alpha_S(Q^2)} F_L(ax,Q^2)$$

- Consistent with determination from • scaling violations (HERAPDF fit)
- Available data at high x is limited \rightarrow ٠ could be changed by JLEIC [+HERA]

Eur.Phys.J.C 74 (2014) 2814

The combined Charged Current data

- As compared to NC: reduced number of points and limited to high Q²≥300 GeV²
- Cross section for e⁺p is lower than e⁻p
 - u-valence quark available for e⁻p and d-valence for e⁺p [~factor 1/2]
 - Helicity factor: extra suppression of valence quark in e⁺p [at low y]
- Although statistically limited, the CC data are essential in the HERAPDF fit to separate u-type and d-type quarks and to constrain the valence quarks at high x

Single differential high Q² cross sections

- Single-differential cross sections dσ/dQ²
- Neutral Current (NC) and Charged Current (CC) measurements, each for e⁺p and e⁻p
- At low Q²≤3000 GeV² NC is much larger than CC [photon compared to W propagator]
- At high Q² all cross sections are similar, "electroweak unification"
- A text-book plot from HERA

JPOS17, September 2017

QCD fit of HERA data

- PDFs traditionally are extracted from simultaneous fits of many datasets
- The HERAPDF is extracted from HERA data alone: proton PDFs are determined at NLO and NNLO
- Fit ansatz: at a low scale µ_{f0} < m_c parameterize the (u,d,s,g) PDFs
- Evolve PDFs to higher scales and fit cross section predictions to DIS data

Parametrisation at the starting scale:

gluon $xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g},$ valence $\begin{aligned} xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ sea \begin{aligned} x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x), \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$

Strange quark is described by a fraction f_s $x \overline{D} = (1 - f_s) x \overline{d} + f_s x \overline{s}$ [f_s is not constrained by HERA data]

• Charm and beauty is created above thresholds in the PDF evolution (Variable Flavor-Number Scheme, VFNS) or is present only in the hard matrix elements (Fixed Flavor Number Scheme, FFNS)

The HERAPDF2.0 QCD fit

- Proton PDFs at a scale µ²=10 GeV², determined in an NNLO QCD fit of HERA data
- The experimental uncertainties are small
- For low x<10⁻³, model and parameterisation uncertainties are dominant
- The high-x region is not measured well but is constrained mainly by the choice of parameterisation
- With additional data (JLEIC), the assumptions on the parameterisation at high x possibly could be relaxed

Comparisons of data and QCD fit

- The consistency between data and QCD fit is investigated by excluding data below a certain Q² from the fit and looking at χ^2/N_{DE}
- Data at lowest Q² are least compatible with the QCD fit, the χ^2/N_{DF} curve flattens out for Q² ≥ 10 GeV²

At low Q²/low-x there are discrepancies in the turn-over region, – where the F_L contribution is relevant $\sigma_{r,NC} \simeq F_2 - \frac{y^2}{V}F_L$

JPOS17, September 2017

Examples of other HERA measurements

- Charm and beauty production and determination of the respective quark masses
- Jet production and the determination of α_s

Charm and beauty production at HERA

Measured quantity: reduced cross section σ_{red} with charm or beauty in final state as a function of Q² and x

NLO calculations: fixed-flavour number scheme (FFNS) where PDF only contains light flavours u,d,s and the gluon. Massive heavy quarks are in the matrix elements

Experimental methods: High pt lepton Reconstructed D,D* mesons Impact parameter, secondary vertex

JPOS17, September 2017

HERA charm and beauty data

JPOS17, September 2017

Charm and beauty: ratio to NLO QCD

H1 and ZEUS

- **Overall satisfactory** description of the HERA c and b data by NLO QCD, not by NLO QCD, not much dependent on to PDF choice
- Slope difference data/theory as a function of x is visible for charm data at Q²~12 GeV²
- Data at higher x will be very interesting to test theories H1prelim-17-071, ZEUS-prel-17-01

NLO HERAPDF2.0 FF3A

HERA (prel.)

https://www.desy.de/h1zeus/combined results/index.php?do=heavy flavours

JPOS17, September 2017

S.Schmitt, HERA proton structure

X_{Bi}

Charm and beauty quark masses

- Charm and beauty data together with HERA inclusive DIS data are taken as input to a NLO – QCD fit (dashed line)
- Simultaneously extract PDFs and c,b masses

 $m_c(m_c) = 1209^{+46}_{-41} (\text{fit})^{+62}_{-14} (\text{model})^{+7}_{-31} (\text{param}) \text{ MeV}$ $m_b(m_b) = 4049^{+104}_{-109} (\text{fit})^{+90}_{-32} (\text{model})^{+1}_{-31} (\text{param}) \text{ MeV}$

Compatible with previous HERA analyses and with world data PDG: $m_c(m_c)=1270\pm30$ MeV and $m_b(m_b)=4180\pm30$ MeV

H1prelim-17-071, ZEUS-prel-17-01 https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

JPOS17, September 2017

JPOS17, September 2017

Jet production in the Breit frame

- New data on jet production in the Breit frame • published recently by H1
- NNLO theory calculation became available • recently

 \rightarrow unique change to improve both on the experimental and the theoretical precision

Data at high jet p_{τ} and high Q² are statistically limited but theoretically most precise \rightarrow JI FIC

$\boldsymbol{\alpha}_{_{s}}$ determination at NNLO from jet data

- First determination of α_s from jets in DIS at NNLO accuracy
- Close cooperation with theorists
- DIS jets can compete with LEP results
- Paper in editorial process

H1prelim-17-031, close to publication

JPOS17, September 2017

HERA analysis and data preservation

- HERA data are preserved at DESY and MPI Munich
- The HERA collaborations are still active in producing papers
- A chance for JLEIC students or postdocs to do analysis on real data
- Both H1 and ZEUS welcome new members
- No financial commitment involved

Contact M.Wing or S.Schmitt to join ZEUS or H1 m.wing@ucl.ac.uk , Stefan.Schmitt@desy.de

DPHEP storage system at DESY

A twofold system

Summary

- World's only ep collider HERA was operated 1992-2007
- Hera kinematic domain: low-x [awaiting high-x from JLEIC]
- Results shown in this talk: inclusive cross sections and PDFs, charm and beauty production, jets and $\alpha_{_{S}}$
- Another big area of analyses at HERA: diffractive and exclusive processes (not shown in this talk \rightarrow backup)
- HERA collaborations are still doing analysis, data is preserved for long-term usage

\rightarrow join us now to analyze HERA data in view of JLEIC

Backup slides

Diffraction at HERA

Hard diffraction: DPDF Soft diffraction: IP trajectory, ...

Proton taggers

- no proton dissociation
- Direct reconstruction of system Y
- Low acceptance and/or low statistics
- Large rapidity gap event selection
 - Include dissociation
 - Poor reconstruction of system Y
 - High statistics

34

cH1:

Inclusive diffraction F^{D3}

x_{in}=0.0003

٠

•

•

•

Measurement of F_L^D

- Rosenbluth separation in diffraction: measure longitudinal structure function
- HERA measurements are statistically limited and do not reach to the regions where the model predictions are divergent of each other
- Interesting for JLEIC or JLEIC+HERA?

Eur. Phys. J. C (2011) 71:1836

Forward proton data

DESY

- Forward proton was detected at HERA using "Roman pot" detectors
- Measurement of $F_2^{D4}(Q^2,\beta,x_{IP},t)$
- H1: FPS (HERA-I), FPS and VFPS (HERA-II)
- ZEUS: LPS (HERA-I)
- Data of ZEUS LPS and H1 FPS are combined in a limited t-range
- H1 VFPS data not yet published, preliminary F^{D3}₂ measurement

Exclusive measurements

- Many measurements were performed with HERA-I data but not yet with HERA-II data
- Typical measurements: diffractive vector meson production $\rho,\phi,J/\psi,\psi',Y$ and DVCS
- HERA-II data sample is interesting because of large available luminosity and dedicated (track) triggers for lowmultiplicity states – but not all channels have been analyzed yet

