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Low	to	moderate	Q2:	

hadronic:	N + Δ + N*	etc.	
• as	Q2	increases	more	and  

more	parameters	

• Loop	integra.on	using	sum	of	monopole	
transi.on	form	factors	fit	to	spacelike	Q2  

Moderate	to	high	Q2:	
• GPD	approach:	assump.on	of	hard	photon  

interac.on	with	1	ac.ve	quark	

• Embed	in	nucleon	using	Generalized	
Parton	Distribu.ons	

• Valid	only	in	certain	kinema.c 
range	(|s,t,u| ≫ M²)  

• pQCD:		recent	work	indicates	two	ac.ve	
quarks	dominate 

“handbag” “cat’s ears”
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Hadronic	and	Partonic	Approaches

Afanasev	et	al.,	PRD	72,	013008	(2005)

PGB,	Melnitchouk,	&	Tjon,	PRL	91,	142304	(2003)
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• posi.ve	slope	
• vanishes	as	ε → 1 
• nonlinearity	grows	with  
increasing	Q2	

• GM	dominates	in	loop	integral	
• Right	order	of	magnitude	and	
sign	to	explain	GE/GM	ra.o 

• changes	sign	at	Q2 ≈ 0.4 GeV2	

• agrees	with	sta.c	(Feshbach)	
limit	for	point	par.cle	(no	form	
factors	in	loop	and	Q²→ 0)	

• GE	dominates	in	loop	integral

Nucleon	(elas.c)	intermediate	state

4

Feshbach limit 
(iterated Coulomb)
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FIG. 1: Two-photon exchange diagrams with ∆ excitation for elastic ep scattering.

amplitude for the box diagram in Fig. 1(a) is given as,

M (a,∆) = −i

∫

d4k

(2π)4
u(p3)(−ieγµ)

i(p/1 + p/2 − k/)

(p1 + p2 − k)2 −m2
e + iε

(−ieγν)u(p1)
−i

(p4 − k)2 + iε

×
−i

(k − p2)2 + iε
u(p4)Γ

µα
γ∆→N(k, p4 − k)

−i(k/+M∆)P
3/2
αβ (k)

k2 −M2
∆ + iε

Γνβ
γN→∆(k, k − p2)u(p2),

(4)

where

P 3/2
αβ (k) = gαβ −

γαγβ
3

−
(k/γαkβ + kαγβk/)

3k2
, (5)

is the spin-3/2 projector. Amplitude for the cross-box diagram Fig. 1(b) M (b,∆) can be

written down in similar manner. The amplitude in Eq. (4) is IR finite because when

the four-momentum of the photon approaches zero, the γN∆ vertex functions Γ′s also

approaches zero. Therefore we do not have to include an infinitesimal photon mass in the

photon propagators to regulate the IR divergence in Eq. (4). The vertex functions Γ′s

for γ∆ → N and γN → ∆ are defined by

u(p+ q)Γµα
γ∆→N(p, q)u

∆
α (p) = −ie⟨N(p + q)|Jµ

EM |∆(p)⟩, (6)

u∆
β (p)Γ

νβ
γN→∆(p, q)u(p− q) = −ie⟨∆(p)|Jν

EM |N(p− q)⟩, (7)

where the q′s in both Γµα
γ∆→N(p, q) and Γβν

γN→∆ refer to the incoming momentum of the

photon, as in [15].

We now elaborate, in the followings, on the three improvements over the previous

calculations we will carry out in this study.

•Include	all	3	N → Δ mul.poles,	with	form	factors	fit	to	CLAS	data	
•Opposite	sign	to	nucleon	contribu.on	
•Qualita.vely	correct,	BUT	diverges	as	ε → 1,	implying	a	viola.on	of	
unitarity	(Froissart	bound)

Δ and N*	intermediate	states
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FIG. 3: δ∆ vs. ϵ at Q2 = 3 GeV2. The vertical (blue) dashed lines correspond to a value of

ϵ = 0.904 above which the predictions of our hadronic model could be questionable. See text

for explanation. (a) With ∆ form factors of Eq. (13) and coupling parameters g1 = 7, g2 = 9.

The (red) dotted and (black) solid curves correspond to g3 = 0 and g3 = ±2, respectively, using

vertex relation of Eq. (9). (Green) dashed and (olive) dash-doted curves correspond to g3 = -2

and 2, obtained with the correct vertex relation of Eq. (8). (b) Dependence of δ∆ on ϵ with

the use of correct vertex function but different coupling constants and form factors. The (red)

dotted and (olive) dash-doted curves, labelled by KBMT correspond to g1 = 7, g2 = 9, g3 = 0

and g1 = 6.59, g2 = 9.06, g3 = 7.16, respectively, both with the ∆ form factors of Eq. (13)

employed in [15]. The (blue) dashed and (black) solid curves, labelled by ZY, correspond to

g1 = 7, g2 = 9, g3 = 0 and g1 = 6.59, g2 = 9.06, g3 = 7.16 with the realistic ∆ form factors of Eq.

(14).

obtained with the realistic ∆ form factors Eq. (14), correspond to (g1 = 7, g2 = 9, g3 = 0)

and (g1 = 6.59, g2 = 9.06, g3 = 7.16), respectively. The large differences between (red)

dotted and (black) solid curves, and (green) dash-dotted and (blue) dashed curves, are

attributed to the different form factors used. However, one notes that the (black) solid

and (blue) dashed curves are very close to each other which implies that once the realistic

form factors are employed, the effect of Coulomb quadrupole coupling is greatly reduced.

Hereafter, all the results to be given are obtained with the use of correct γN∆ vertex

function, realistic form factors, and coupling constants, unless otherwise specified.

Recently, it has been assumed in [21] that for s = (p1 + p2)2 → ∞ (Regge limit),

Kondratyuk et al., PRL 95, 172503 (2005) 
Zhou & Yang, Eur. Phys. J. A. 51, 105 (2015)

Direct	loop	integra.on	method

Unphysical	
divergence



Solu.on:	Dispersive	method

S = 1 + iM
S† = 1� iM†

SS† = 1

�i
�
M�M†� = 2⇥mM = M†M

�m ⇥f |M|i⇤ = 1

2

Z
d�

X

n
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on shell

k₁

•Imaginary	part	determined	by	unitarity	
•Uses	only	on-shell	form	factors	

•Use	form	factors	directly	fit	to	data,	not	reparametrized	by	sum	of	monopoles	
•Real	part	determined	from	dispersion	rela.ons
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M�� ! (�µ)
(e) ⌦
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F 0
1(Q

2, ⌫)�µ + F 0
2(Q

2, ⌫)
i�µ⌫q⌫
2M

◆(p)

+ (�µ�5)
(e) ⌦

�
G0

a(Q
2, ⌫)�µ�5

�(p)

Dispersion	rela.ons

TPE	using	dispersion	rela.ons
Generalized	form	factors

��� = 2Re
"GE(F 0

1 � ⌧F 0
2) + ⌧GM (F 0

1 + F 0
2) + ⌫(1� ")GMG0

a

"G2
E + ⌧G2

M
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Re F 0
1(Q

2, ⌫) =
2

⇡
P
Z 1

�⌧
d⌫0

⌫

⌫02 � ⌫2
Im F 0

1(Q
2, ⌫0) ,

Re F 0
2(Q

2, ⌫) =
2

⇡
P
Z 1

�⌧
d⌫0

⌫

⌫02 � ⌫2
Im F 0

2(Q
2, ⌫0) ,

Re G0
a(Q

2, ⌫) =
2

⇡
P
Z 1

�⌧
d⌫0

⌫0

⌫02 � ⌫2
Im G0

a(Q
2, ⌫0) .

Integral	extends	into	``unphysical	region’’	down	to	zero	energy	(cos θ < -1)



A	few	technical	details
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s�W 2
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Z
d⌦k1

f
�
Q2

1, Q
2
2

�
G1(Q2

1)G2(Q2
2)

(Q2
1 + �2) (Q2
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↵

4⇡
Q2 1

i⇡2

Z
d4q1

Im {L↵µ⌫H
↵µ⌫}

(q21 � �2)(q22 � �2)

•	L	and	H	are	leptonic	and	hadronic	tensors	
•	f	is	a	polynomial	in	photon	virtuali.es	Q12	and	Q22 

• Gi(Qi2) is	a	transi.on	form	factor	with	poles	in	the	complex Qi2 plane

Contours	are	concentric	ellipses	of	radial	parameter	r
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quasi-VCS, where the intermediate electron is collinear
with either the incoming or outgoing electrons, the TPE
process also has a near singularity when the intermedi-
ate electron momentum goes to zero |~l| ! 0 (i.e. the
intermediate electron is soft). In this case the first pho-
ton takes on the full momentum of the initial electron,
i.e. ~q1 ! ~k, whereas the second photon takes on the full
momentum of the final electron, i.e. ~q2 ! ~k0. One im-
mediately sees from Eq. (24) that this situation occurs
when the invariant mass of the hadronic state takes on
its maximal value W = W

max

⌘ p
s �m

e

. In this case,
the photon virtualities are given by :

Q2
1, RCS

=

m
ep
s

n

�p
s�m

e

�2 �M2
N

o

,

Q2
2, RCS

=

m
ep
s

n

�p
s�m

e

�2 �M2
�

o

. (28)

This kinematical situation with two quasi-real pho-
tons, corresponding with quasi-real Compton scattering
(quasi-RCS), also leads to an enhancement in the corre-
sponding integrand of AbsT2� .

In the upper panel of Fig. 3, we show the kinemat-
ical accessible regions for the virtualities Q2

1, Q
2
2 in the

phase space integral of Eq. (21) for a beam energy of
E

e

= 0.855 GeV corresponding with the A4@MAMI ex-
periment, for different values of the c.m. angle ✓

cm

. In
the lower panel we display these phase space regions for
three different values of W , corresponding with the N ,
�(1232), and S11(1535) intermediate states. We notice
from Fig. 3 that the largest possible photon virtualities
in the TPE amplitude occur for the nucleon intermediate
state, whereas for the S11(1535) intermediate state both
photons have very small virtualities.

Using Eq. (21) for the absorptive part of the TPE am-
plitude, we can then express the normal spin asymmetry
B

n

of Eq. (4) for the ep ! e� process in terms of a
3-dimensional phase-space integral:

B
n

= � e2

D1�(s,Q2
)

1

(2⇡)3

Z (
p
s�me)

2

M

2

dW 2

✓

s�W 2

8 s

◆

⇥
Z

d⌦1
1

Q2
1 Q

2
2

Im (L
µ⌫

Hµ⌫

) , (29)

where the denominator factor D1�(s,Q
2
) is originating

from the OPE process as given by Eq. (16), and d⌦1 =

d cos ✓1d�1.

Equivalently, the phase space integration in Eq. (29)
can be re-expressed in a Lorentz invariant way as an in-
tegral over photon virtualities Q2

1 and Q2
2 by using the

Jacobian

J =

�

�

�

�

@Q2
1

@ cos ✓1

@Q2
2

@�1

�

�

�

�

. (30)

Using Eq.(25) and an analogous expression for Q2
2, the
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Figure 3. Kinematical accessible region for the virtualities
Q2

1, Q
2
2 in the phase space integral of Eqs. (21, 29) entering

the ep ! e� process. The upper panel shows the phase
space regions for different c.m. angles ✓

cm

as indicated on
the ellipses for E

e

= 0.855 GeV (s = 2.485 GeV2), and for
W = 0.9383 GeV (i.e. for a nucleon intermediate state). The
lower panel shows the allowed values of the photon virtualities
for different intermediate states for ✓

cm

= 30o. We show three
cases corresponding with the contribution of N , �(1232) and
S11(1535) excitations. The accessible regions correspond with
the interior of the ellipses. The intersection with the axes
correspond with quasi-VCS, whereas the situation at W =p
s � m

e

where all ellipses shrink to the point Q2
1 = Q2

2 ' 0
corresponds with quasi-RCS.

Jacobian is given by

J =

⇥

(s�W 2
+m2

e

)

2 � 4m2
e

s
⇤

/(4s2)

⇥ ⇥

(s�M2
N

+m2
e

)

2 � 4m2
e

s
⇤1/2

⇥ ⇥

(s�M2
� +m2

e

)

2 � 4m2
e

s
⇤1/2

⇥ sin ✓
cm

sin ✓1 sin�1, (31)

Use	numerical	contour	integra.on	
Allows	for	use	of	arbitrary	func.onal	
forms	for	transi.on	form	factors	Gi(Qi2)
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Logarithmic	divergence	
at	low	energies

Nucleon	(elas.c)	intermediate	state
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Agrees	with	old	loop	
integra5on	method
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• Include	all	3	mul.poles,	with	form	factors	fit	to	recent	CLAS	data	
•GM*	x	GM* dominates,	but	GM*	x	GE*	interference	is	significant
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Δ	intermediate	state	(zero	width	approxima.on)

changes	sign	at	Q2 ≈ 0.6 GeV2

No	unphysical	
divergence	at	ε→1



π N 
(inelastic)

N (elastic)

total

Target normal spin asymmetry
Ee = 0.570  GeV

Proton Neutron

%

11

Direct	measurements	of	Im	part

This	is	all	in	the	physical	region.

(taken from Pasquini & 
Vanderhaeghen)



●

●
●

●

●
●

●

●
●

Q2 = 2.50 GeV2

(b)

N

N+Δ

0.0 0.2 0.4 0.6 0.8 1.0

0.66

0.68

0.70

0.72

0.74

ε

R
TL

Polariza.on	data

12

●

●

●

●

●

●●● GEp2γ

(a)

N

N+Δ

0.0 0.2 0.4 0.6 0.8 1.0

0.98

1.00

1.02

1.04

ε

P
L/P

L(
0)

●

●
●

●

●
●

●

●
●

Q2 = 2.50 GeV2

(b)

N

N+Δ

0.0 0.2 0.4 0.6 0.8 1.0

0.66

0.68

0.70

0.72

0.74

ε

R
TL

Venkat	form	factors

Kelly	form	factors

RTL	indicates	mild	sensi.vity 
to	GE		form	factor	at	low	𝜀



TPE	effect	on	ra.o	of	e+p to	e-p	cross	sec.ons
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TPE	interference	changes	sign	for	positrons	vs	electrons

Old	data	from	1960-1970’s

R2� =
�e+

�e�
⇡ 1� 2���
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FIG. 14: Ratio R
2� of e+p to e�p cross sections as a function of " for fixed energy (a) E =

1.594 GeV and (b) E = 0.998 GeV. The contributions with nucleon only (dashed blue curves) and

the sum of nucleon and � (solid red curves) intermediate states are compared with data from the

VEPP-3 experiment (triangles) [26], with the statistical and systematic uncertainties indicated by

the (black) inner and (gray) outer error bars, respectively.

aimed at providing measurements of R
2� over a larger range of " and Q2 with significantly

reduced uncertainties. In Fig. 13 the R
2� ratio from the CLAS experiment is shown as a

function of " at averaged Q2 values of hQ2i = 0.85 GeV2 and hQ2i = 1.45 GeV2 [Figs. 13(a)

and (b), respectively], and as a function of Q2 at averaged " values of h"i = 0.45 and

h"i = 0.88 GeV2 [Figs. 13(c) and (d), respectively]. Most of the data at the larger " values

are consistent with unity within the errors, but suggest a nonzero ratio, ⇡ 2% – 4% greater

than unity, at the lowest " value for the higher-Q2 set. The trend is consistent with the

ratio calculated here, which shows a rising R
2� with decreasing ". At these kinematics the

calculated TPE correction is dominated by the nucleon elastic intermediate state, with the

� contribution reducing the ratio slightly. Note that both the data and the calculated TPE

corrections here (and elsewhere, unless otherwise stated) are shown relative to the Mo-Tsai

infrared result.

The same trend is seen when the R
2� data are viewed as a function of Q2 for fixed ". At

the larger average " value, h"i = 0.88, the e↵ects are consistent with zero as well as with

the small predicted TPE correction. At the smaller value h"i = 0.45, on the other hand, the

larger predicted e↵ect is consistent with the larger R
2� values with increasing Q2. Again the

e↵ects of the � intermediate state are small at low Q2 values, but become visible at larger

Q2, where they improve the agreement between the theory and experiment.

33

TPE	effect	on	ra.o	of	e+p to	e-p	cross	sec.ons

14

TPE	interference	changes	sign	for	positrons	vs	electrons

VEPP-3	(Novosibirsk)

R2� =
�e+

�e�
⇡ 1� 2���
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FIG. 13: Ratio R
2� of e+p to e�p cross sections as a function of " for (a) fixed hQ2i = 0.85 GeV2

and (b) fixed hQ2i = 1.45 GeV2, and as a function of Q2 for (c) fixed h"i = 0.45 and (d) fixed

h"i = 0.88. The contributions with nucleon only (dashed blue curves) and the sum of nucleon

and � (solid red curves) intermediate states are compared with data from CLAS at Je↵erson Lab

(circles) [25], with the statistical and systematic uncertainties indicated by the (black) inner and

(gray) outer error bars, respectively.

the ratio

R
2� =

�e+

�e�
⇡ 1 � 2 ���, (61)

where �e± ⌘ d�(e±p ! e±p)/d⌦, provides a direct measure of e↵ects beyond the Born

approximation. Earlier data from elastic e+p and e�p experiments in the 1960s from

SLAC [69, 70], Cornell [71], DESY [72] and Orsay [73] gave some hints of a small en-

hancement of R
2� at forward angles and low Q2, but were in the region (at large ") where

TPE is relatively small and were consistent within errors with R
2� = 1.

More recently, several dedicated e+p to e�p ratio experiments have been performed in

CLAS at Je↵erson Lab [25], VEPP-3 in Novosibirsk [26, 27] and OLYMPUS at DESY [28]

32

TPE	effect	on	ra.o	of	e+p to	e-p	cross	sec.ons

15

CLAS	(Jefferson	Lab)



A comparison of the results from recent R2γ experiments
to Blunden’s newest calculation (N þ Δ) is shown in Fig. 3.
We plot the difference between the data and theory
calculated at the ϵ and Q2 for each data point to approx-
imately take into account that the data were taken at
different ϵ and Q2 values. This shows the data are largely
consistent with each other, but mostly below the calculation
by Blunden. A similar plot could be made versus Q2.

Comparison with the phenomenological prediction of
Bernauer (not shown) shows good agreement.
We do not agreewith the conclusions of the earlier Letters

[25,26]. The data shown in Fig. 3 clearly favor a smallerR2γ.
While the agreement with the phenomenological prediction
of Bernauer suggests that TPE is causing most of the
discrepancy in the form factor ratio in the measured range,
the theoretical calculation of Blunden, which shows roughly
enough strength to explain the discrepancy at larger Q2,
does not match the data in this regime. To clarify the
situation, the size of TPE at large Q2 has to be determined
in future measurements.

FIG. 3. Comparison of the recent results to the calculation by
Blunden. The data are in good agreement, but generally fall
below the prediction. Please note that data at similar ϵ values have
been measured at different Q2. Also note that the VEPP-3 data
have been normalized to the calculation at high ϵ.

TABLE II. OLYMPUS results for R2γ using the prescriptions: Mo-Tsai to order α3 (a) and to all orders (b); and
using Maximon-Tjon to order α3 (c) and to all orders (d).

hϵi hQ2i GeV2=c2 R2γ (a) R2γ (b) R2γ (c) R2γ (d) δstat δuncorrsyst δcorrsyst

0.978 0.165 0.9971 0.9967 0.9979 0.9978 0.0003 0.0046 0.0036
0.898 0.624 0.9920 0.9948 0.9944 0.9958 0.0019 0.0037 0.0045
0.887 0.674 0.9888 0.9913 0.9912 0.9923 0.0021 0.0042 0.0045
0.876 0.724 0.9897 0.9927 0.9921 0.9935 0.0023 0.0060 0.0045
0.865 0.774 0.9883 0.9921 0.9907 0.9929 0.0026 0.0050 0.0045
0.853 0.824 0.9879 0.9918 0.9903 0.9926 0.0029 0.0039 0.0045
0.841 0.874 0.9907 0.9952 0.9931 0.9958 0.0032 0.0042 0.0045
0.829 0.924 0.9919 0.9967 0.9943 0.9972 0.0036 0.0033 0.0045
0.816 0.974 0.9950 0.9998 0.9973 1.0002 0.0039 0.0033 0.0045
0.803 1.024 0.9913 0.9969 0.9936 0.9971 0.0043 0.0040 0.0045
0.789 1.074 0.9905 0.9955 0.9927 0.9956 0.0047 0.0050 0.0045
0.775 1.124 0.9904 0.9960 0.9926 0.9960 0.0052 0.0041 0.0045
0.761 1.174 0.9950 1.0011 0.9971 1.0009 0.0057 0.0063 0.0045
0.739 1.246 0.9945 1.0007 0.9964 1.0002 0.0046 0.0056 0.0045
0.708 1.347 0.9915 0.9985 0.9930 0.9977 0.0054 0.0049 0.0046
0.676 1.447 0.9842 0.9912 0.9854 0.9899 0.0063 0.0050 0.0046
0.635 1.568 1.0043 1.0126 1.0049 1.0105 0.0063 0.0055 0.0046
0.581 1.718 0.9968 1.0063 0.9966 1.0032 0.0077 0.0096 0.0046
0.524 1.868 0.9953 1.0055 0.9941 1.0013 0.0095 0.0118 0.0046
0.456 2.038 1.0089 1.0212 1.0064 1.0154 0.0104 0.0108 0.0046

FIG. 2. OLYMPUS result for R2γ using the Mo-Tsai [21]
prescription for radiative corrections to all orders. Uncertainties
shown are statistical (inner bars), uncorrelated systematic (added
in quadrature, outer bars), and correlated systematic (gray band).
Note the 12° data point at ϵ ¼ 0.978 is completely dominated by
systematic uncertainties.
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A comparison of the results from recent R2γ experiments
to Blunden’s newest calculation (N þ Δ) is shown in Fig. 3.
We plot the difference between the data and theory
calculated at the ϵ and Q2 for each data point to approx-
imately take into account that the data were taken at
different ϵ and Q2 values. This shows the data are largely
consistent with each other, but mostly below the calculation
by Blunden. A similar plot could be made versus Q2.

Comparison with the phenomenological prediction of
Bernauer (not shown) shows good agreement.
We do not agreewith the conclusions of the earlier Letters

[25,26]. The data shown in Fig. 3 clearly favor a smallerR2γ.
While the agreement with the phenomenological prediction
of Bernauer suggests that TPE is causing most of the
discrepancy in the form factor ratio in the measured range,
the theoretical calculation of Blunden, which shows roughly
enough strength to explain the discrepancy at larger Q2,
does not match the data in this regime. To clarify the
situation, the size of TPE at large Q2 has to be determined
in future measurements.

FIG. 3. Comparison of the recent results to the calculation by
Blunden. The data are in good agreement, but generally fall
below the prediction. Please note that data at similar ϵ values have
been measured at different Q2. Also note that the VEPP-3 data
have been normalized to the calculation at high ϵ.
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FIG. 2. OLYMPUS result for R2γ using the Mo-Tsai [21]
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Figure 3.15: Difference between R
2�

and model predictions as a function of ". The blue diamonds are VEPP-3, the black
boxes are from CLAS, and the red circles are from OLYMPUS. Error bars reflect the quadrature sum of statistical and
uncorrelated systematic uncertainties.

Figure 3.16: Difference between R
2�

and model predictions as a function of Q2. Data symbols are the same as in
Fig. 3.15.
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Comparing	theory	and	experiment
VEPP3

CLAS

OLYMPUS

About 1% below 
theory over all ε



Figure 3.17: Difference between normalized R
2�

and model predictions as a function of ". Data symbols are the same as
in Fig. 3.15.

proton and light nuclei, but disagree with the data on a high-Z target 208Pb both in sign and magnitude,
possibly due to Coulomb distortion effects. The measurements of single-spin target asymmetry [78] in
quasi-elastic scattering on a transversely polarized 3He target showed a TPE effect that agreed with
GPD predictions at high momentum transfer. The data both on target and beam SSA show evidence
of inelastic excitations of the intermediate hadronic state and provide valuable input for theoretical
constraints of TPE.

On the theoretical front, there has been significant progress in calculations of TPE based on the
use of dispersion relations [54, 58, 60]. The use of spin-1⁄2 and spin-3⁄2 helicity amplitudes from elec-
troproduction data throughout the resonance region is a notable advance [58]. At forward angles and
low Q2 the dispersive approach allows one to use total photonucleon cross section data to constrain
hadronic uncertainties [61, 63]. Connecting the low to moderate Q2 hadronic models with the high Q2

QCD-based models studied in Refs. [48–50, 66] remains an elusive goal.
Another area where progress might be made is regarding higher order radiative corrections. The

large difference between exponentiated and non-exponentiated radiative corrections that increase with
decreasing " suggests higher order corrections may be warranted. In addition, a reanalysis of the
existing form factor and polarization data to uniformly apply and update the radiative corrections
might provide further insight into the TPE process and the role it has in lepton-nucleon scattering.
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No normalization With normalization

Data set �2

⌫ ⌫ �2

⌫ ⌫ N
⇣

N�1

�Rnorm

2�

⌘

Model: ��� = 0

VEPP-3 7.97 4 7.97 4 – –
CLAS 0.99 12 1.25 11 1.0012 0.40
OLYMPUS 0.64 20 0.68 19 1.0034 0.76
All 1.57 36 1.73 34 – –

Model: Blunden & Melnitchouk [54]
VEPP-3 2.62 4 2.62 4 – –
CLAS 0.90 12 0.91 11 1.0032 1.07
OLYMPUS 1.57 20 0.64 19 1.0082 1.82
All 1.46 36 0.96 34 – –

Model: Borisyuk & Kobushkin [58]
VEPP-3 2.28 4 2.28 4 – –
CLAS 1.02 12 0.94 11 1.0038 1.27
OLYMPUS 2.15 20 0.75 19 1.0097 2.16
All 1.79 36 1.00 34 – –

Model: Bernauer et al. [35]
VEPP-3 1.90 4 1.90 4 – –
CLAS 0.74 12 0.90 11 0.9985 �0.40
OLYMPUS 0.46 20 0.51 19 1.0019 0.42
All 0.71 36 0.80 34 – –

Table 3.4: Comparison of VEPP-3, CLAS, OLYMPUS, and the combined data set (All) to various TPE calculations
showing the reduced �2 value and the normalization factor N derived from the fit. The “No normalization” column
represents a comparison when the normalization uncertainties of CLAS and OLYMPUS are added in quadrature. The
column labelled “With normalization” is when the CLAS and OLYMPUS normalizations are allowed to float, as described
in the text.

The results of these experiments are by no means definitive. The majority of the data are well
below where the form factor discrepancy is significant (Q2 > 2 GeV2), so questions regarding the
source of this discrepancy remain largely unanswered. There is a clear need for similar experiments
at larger Q2, and perhaps more importantly, at " < 0.5. Figure 2.10 shows that R

2� remains small,
even at Q2

= 2.5 GeV2, for " > 0.5. This, of course, poses significant experimental difficulties due to
the rapid drop in the elastic cross section at large lepton scattering angles. At the present time no
new experiments have been approved for studies in the high-Q2 region, so the question may remain
unanswered for several years. There have been discussions in the community to produce an e+ beam
at Jefferson Lab [136], but any such facility is uncertain and many years in the future.

An upcoming MUSE experiment [137] at Paul Scherrer Institute (PSI) will address the problem
of the proton radius [3, 138] via precision measurements at small transferred momenta. MUSE will
provide a comparison of electron and positron scattering on the proton, as well as positive and negative
muons, directly constraining TPE for these processes at very low Q2.

Effects due to TPE have been sought in experiments on polarization observables. Polarization
measurements [69], where the real part of TPE could alter the angular dependence of the recoil proton
polarization, have not observed substantial deviations of the polarization ratio, but reported deviations
in the individual polarization components. Single-spin asymmetries (SSA) caused by normal (with
respect to scattering plane) polarization provide a probe of the imaginary part of TPE amplitude.
The data on beam SSA [87, 89] are in good agreement with unitarity-based calculations [83–86] for the
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Allowing	normaliza.on	to	float

•For	CLAS	and	OLYMPUS,	allow	normaliza.on	to	float,	with	a	penalty	
determined	by	normaliza.on	uncertainty	of	each	data	set	

•Rules	out	no-TPE	hypothesis	at		> 90%	level



δᵧᵧ plot	vs.	Q² and ε showing constant energy slices (in GeV) 
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Borisyuk & Kobushkin, PRC92, 035204 (2015)

•Include	πN	spin	1/2	and	3/2 	resonances	
+	background	using	MAID	helicity	
amplitudes	

•Includes	a	finite	width	
•P33	and	S11	dominate	
•Contribu.ons	tend	to	cancel,	in	
qualita.ve	agreement	with	Kondratyuk	&	
Blunden	(2007)	result 
 

•Not	a	full	dispersive	calcula.on	
•Sum	of	monopoles	form	factors	is	
limi.ng

DMITRY BORISYUK AND ALEXANDER KOBUSHKIN PHYSICAL REVIEW C 92, 035204 (2015)
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FIG. 5. (Color online) TPE contributions of different channels compared, fixed Q2 as indicated on the plots.

other resonances was almost negligible. We think this is due
to the limitations of the approach of Ref. [2]: the Roper
resonance has a large width, and the S11 channel has significant
nonresonant contribution near threshold, but both are absent
in the approximation of Ref. [2].

In qualitative agreement with Ref. [2] (this was also
suggested in Ref. [14]), we see that the contributions of
different channels tend to cancel each other.

Nevertheless, some doubt remains. The contributions cal-
culated so far can be viewed as the first terms of the (infinite)
expansion of the total πN contribution in the intermediate

state’s spin J . Whether the series is convergent is not fully
clear. Some light may be shed onto this question by calculating
contributions of the intermediate states with higher spins
(J ! 5/2), which is currently underway.

IV. CONCLUSIONS

We have calculated TPE amplitudes for the elastic electron-
proton scattering, taking into account, besides the elastic
intermediate state, intermediate states containing a πN system
with total angular momentum 1/2 or 3/2. This corresponds
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FIG. 6. (Color online) TPE contributions of different channels compared, fixed ϵ = 0.5.
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OLYMPUS (2016)
Feshbach
elastic TPE
elastic + πN TPE
p + πN TPE, Ref. [90]
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FIG. 17: The DR result for the elastic TPE and for the sum of the elastic and ⇡N TPE contributions

to the e+p over e�p elastic scattering cross section ratio R2� for lepton beam energy ! = 2.01 GeV,

in comparison with the data from the Olympus Coll. [85]. We also show the Feshbach correction

[87], as well as the total TPE and the sum of the proton + ⇡N contributions in the near-forward

approximation of Ref. [90].
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fit of Ref. [5]
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FIG. 18: The DR result for the elastic TPE and for the sum of the elastic + ⇡N TPE contributions

to the e+p over e�p elastic scattering cross section ratio R2� in comparison with the sum of elastic

+ weighted-� calculation of Sec. III, as well as with the phenomenological fit of Ref. [5]. The

central value of the elastic contribution was used in this plot.

•Also	include	resonant	and	background	πN	states	using	MAID	helicity	amplitudes	
•Full	dispersive	analysis 

•πN	con.nuum	handled	in	unphysical	region	by	analy.c	con.nua.on	from	
physical	region	

•Limited	(for	now)	to	rela.vely	low	Q2 (0.064 ≲ Q2 ≲ 1 GeV2)
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(a) (b) (c)

Figure 1: Box, crossed-box and σ meson exchange diagrams

where mσ is σ meson mass, u (u′) and U (U ′) are lepton and proton spinors, gσpp is σ-meson-proton interaction
constant, and fs is a form factor, arising from the upper (triangle) part of the diagram.

The fs form factor is the main unknown in the Eq.(1), and we will calculate it below. It is determined by
[6]:

T = ū′u fs(q
2) = i(4πα)2

∫

d4k′′

(2π)4
ū′
γν(k̂′′ +m)γµ
k′′2 −m2

u
∆µν

q21q
2
2

(2)

where α is fine structure constant, m is lepton mass, ∆µν is σγγ vertex function,

∆µν = A(gµν q1q2 − q1νq2µ) +B(q21 q2µ − q1q2 q1µ)(q
2
2 q1ν − q1q2 q2ν) (3)

and A and B are two scalar form factors which depend on three variables: q2, q21 and q22 . The kinematics is:

q1 = k′′ − k, q2 = k′ − k′′, q = k′ − k = q1 + q2 (4)

where k (k′) are initial (final) lepton momenta, q2 is momentum transfer squared and as usual −q2 = Q2 > 0.
After algebraic transformations with gamma matrices we have

T = i(4πα)2
∫

d4k′′

(2π)4
1

k′′2 −m2

1

q21q
2
2

ū′

{

A[(k̂′′ −m)(k′′2 −m2 + q21 + q22) +m(q2 − q21 − q22)]

−B(k̂′′ −m)[(k′′2 −m2) qq1 qq2 + q2q21q
2
2 ]
}

u

(5)

Then we use the fact that, for a symmetric function f ,
∫

ū′(k̂′′ −m)u f(q21 , q
2
2)d

4k′′ =

∫

ū′q̂1u f(q21 , q
2
2)d

4k′′ =

∫

ū′
q̂1 + q̂2

2
u f(q21 , q

2
2)d

4k′′ ≡ 0 (6)

and
∫

k′′µ
d4k′′

k′′2 −m2
f(q21 , q

2
2) =

∫
(

k′′k+
k2+

k+µ + qµ · const
)

d4k′′

k′′2 −m2
f(q21 , q

2
2), (7)

(k+ = k + k′ and the second term vanishes after contraction with ū′ and u), therefore

∫

ū′
k̂′′ −m

k′′2 −m2
u f(q21 , q

2
2)d

4k′′ =
m

4m2 − q2
ū′u

∫
(

2 +
q2 − q21 − q22
k′′2 −m2

)

d4k′′ (8)

Using the above equations, we obtain

fs = i(4πα)2
m

4m2 − q2

∫

d4k′′

(2π)4

{

A

[

2

q21
+

2

q22
−

4m2 + q21 + q22 − q2

q21q
2
2(k

′′2 −m2)
(q21 + q22 − q2)

]

−Bq2
[

2−
q21 + q22 − q2

k′′2 −m2

]}

(9)
The form factor B is not known experimentally, since it does not contribute to the cross-section when both
photons are real. Nevertheless, we see that in our equation it comes with a coefficient, proportional to q2. Thus,

2

Other	possible	contribu.ons

Meson	pole	terms	(no	imaginary	part,	so	not	
included	in	dispersive	analysis)

• Chen & Zhou, PRC 90, 045205 (2014) 
• Koshchii & Afanasev, PRD 94, 116007 (2016) 
• Borisyuk, arXiv: 1707.06513 (2017)

meson

•Propor.onal	to	electron	mass	me	
• Small	for	ep	scaqering,	but	may	be	important	for	µp (MUSE)	
•May	be	important	at	very	low	Q2,	or	for	atomic	physics	(charge	radius	
problem)
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Summary
• Lots	of	interes.ng	new	theore.cal	work	mo.vated	by	new	
experimental	results	

• Dispersive	method	only	feasible	approach,	with	connec.on	to	
data	in	forward	angle	limit	
– A	similar	approach	is	essen.al	for	the	γZ	box	in	Qweak	parity-
viola.on	kinema.cs	

• Efforts	underway	to	incorporate	electroproduc.on	data	
throughout	the	resonance	region,	including	background	
– In	forward	angle	limit	the	dispersive	approach	allows	one	to	use	
total	photonuclear	cross	sec.on	data	(Gorchtein)	

• Clear	need	for	defini.ve	e+p measurements	at	high	Q2,	low	ε	
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