Overview of recent theoretical work on two-photon exchange

> Peter Blunden[†] University of Manitoba

JPos17, September 12, 2017

[†]in collaboration with Wally Melnitchouk, Jefferson Lab

Hadronic and Partonic Approaches

Low to moderate Q^2 :

hadronic: $N + \Delta + N^*$ etc.

- as Q² increases more and more parameters
- Loop integration using sum of monopole transition form factors fit to spacelike Q^2

Moderate to high Q^2 :

- GPD approach: assumption of hard photon interaction with 1 active quark
 - Embed in nucleon using Generalized Parton Distributions
 - Valid only in certain kinematic range $(|s,t,u| \gg M^2)$
- pQCD: recent work indicates two active quarks dominate

PGB, Melnitchouk, & Tjon, PRL 91, 142304 (2003)

"handbag"

"cat's ears"

Afanasev et al., PRD 72, 013008 (2005)

Nucleon (elastic) intermediate state

- positive slope
- vanishes as $\varepsilon \to 1$
- nonlinearity grows with increasing Q^2
- *G_M* dominates in loop integral
- Right order of magnitude and sign to explain G_E/G_M ratio

- changes sign at $Q^2 \approx 0.4~{
 m GeV^2}$
- agrees with static (Feshbach) limit for point particle (no form factors in loop and $Q^2 \rightarrow 0$)
- G_E dominates in loop integral

$\Delta \text{ and } N^*$ intermediate states

- Include all 3 $N \rightarrow \Delta$ multipoles, with form factors fit to CLAS data
- Opposite sign to nucleon contribution
- Qualitatively correct, BUT diverges as $\varepsilon \to 1$, implying a violation of unitarity (Froissart bound)

Solution: Dispersive method $S = 1 + i\mathcal{M}$ $S^{\dagger} = 1 - i\mathcal{M}^{\dagger}$ $SS^{\dagger} = 1$

Unitarity
$$\rightarrow -i\left(\mathcal{M} - \mathcal{M}^{\dagger}\right) = 2\Im m \mathcal{M} = \mathcal{M}^{\dagger}\mathcal{M}$$

$$\Im m \langle f | \mathcal{M} | i \rangle = \frac{1}{2} \int d\rho \sum_{n} \langle f | \mathcal{M}^* | n \rangle \langle n | \mathcal{M} | i \rangle$$

$$d\rho = \frac{d^3k_1}{(2\pi)^3 2E_{k_1}} \sim dW_n \, dQ_1^2 \, dQ_2^2$$

- Imaginary part determined by unitarity
- Uses only on-shell form factors
 - Use form factors directly fit to data, not reparametrized by sum of monopoles
- Real part determined from dispersion relations

TPE using dispersion relations

Generalized form factors

$$\mathcal{M}_{\gamma\gamma} \to (\gamma_{\mu})^{(e)} \otimes \left(F_{1}^{\prime}(Q^{2},\nu)\gamma^{\mu} + F_{2}^{\prime}(Q^{2},\nu)\frac{i\sigma^{\mu\nu}q_{\nu}}{2M} \right)^{(p)} + (\gamma_{\mu}\gamma_{5})^{(e)} \otimes \left(G_{a}^{\prime}(Q^{2},\nu)\gamma^{\mu}\gamma_{5} \right)^{(p)}$$

$$\delta_{\gamma\gamma} = 2\text{Re} \frac{\varepsilon G_E(F_1' - \tau F_2') + \tau G_M(F_1' + F_2') + \nu(1 - \varepsilon)G_MG_a'}{\varepsilon G_E^2 + \tau G_M^2}$$

Dispersion relations

$$\operatorname{Re} F_{1}'(Q^{2},\nu) = \frac{2}{\pi} \mathcal{P} \int_{-\tau}^{\infty} d\nu' \frac{\nu}{\nu'^{2} - \nu^{2}} \operatorname{Im} F_{1}'(Q^{2},\nu'),$$

$$\operatorname{Re} F_{2}'(Q^{2},\nu) = \frac{2}{\pi} \mathcal{P} \int_{-\tau}^{\infty} d\nu' \frac{\nu}{\nu'^{2} - \nu^{2}} \operatorname{Im} F_{2}'(Q^{2},\nu'),$$

$$\operatorname{Re} G_{a}'(Q^{2},\nu) = \frac{2}{\pi} \mathcal{P} \int_{-\tau}^{\infty} d\nu' \frac{\nu'}{\nu'^{2} - \nu^{2}} \operatorname{Im} G_{a}'(Q^{2},\nu').$$

Integral extends into ``unphysical region'' down to zero energy (cos $\theta < -1$)

A few technical details

$$\frac{\alpha}{4\pi}Q^{2}\frac{1}{i\pi^{2}}\int d^{4}q_{1} \frac{\operatorname{Im}\left\{L_{\alpha\mu\nu}H^{\alpha\mu\nu}\right\}}{(q_{1}^{2}-\lambda^{2})(q_{2}^{2}-\lambda^{2})}$$

$$\star \frac{s-W^{2}}{4s}\int d\Omega_{k_{1}} \frac{f\left(Q_{1}^{2},Q_{2}^{2}\right)G_{1}(Q_{1}^{2})G_{2}(Q_{2}^{2})}{(Q_{1}^{2}+\lambda^{2})(Q_{2}^{2}+\lambda^{2})}$$

$$k \xrightarrow{k_1} k'$$

$$q_1 \downarrow \downarrow q_2$$

$$p \xrightarrow{} p'$$

- L and H are leptonic and hadronic tensors
- *f* is a polynomial in photon virtualities Q_1^2 and Q_2^2
- $G_i(Q_i^2)$ is a transition form factor with poles in the complex Q_i^2 plane

Use numerical contour integration

Allows for use of arbitrary functional forms for transition form factors $G_i(Q_i^2)$

Contours are concentric ellipses of radial parameter r

Nucleon (elastic) intermediate state $Q^2 = 3 \text{ GeV}^2$

0.2

0.0

0.4

0.6

0.8

1.0

Δ intermediate state (zero width approximation)

• Include all 3 multipoles, with form factors fit to recent CLAS data • $G_M^* \ge G_M^*$ dominates, but $G_M^* \ge G_E^*$ interference is significant

Direct measurements of Im part

Target normal spin asymmetry Ee = 0.570 GeV

This is all in the physical region.

Polarization data

 R_{TL} indicates mild sensitivity to G_E form factor at low ε

0.4

ε

0.2

0.0

ε

N

0.6

0.8

1.0

TPE effect on ratio of e^+p to e^-p cross sections

TPE interference changes sign for positrons vs electrons

$$R_{2\gamma} = \frac{\sigma^{e^+}}{\sigma^{e^-}} \approx 1 - 2\delta_{\gamma\gamma}$$

Old data from 1960-1970's

TPE effect on ratio of e^+p to e^-p cross sections

TPE interference changes sign for positrons vs electrons

$$R_{2\gamma} = \frac{\sigma^{e^+}}{\sigma^{e^-}} \approx 1 - 2\delta_{\gamma\gamma}$$

VEPP-3 (Novosibirsk)

TPE effect on ratio of e^+p to e^-p cross sections CLAS (Jefferson Lab)

15

TPE effect on ratio of e^+p 1.05Main spectrometer 12° telescopes Correlated uncertainty 1.04 to *e*⁻*p* cross sections Blunden N only 1.03 Blunden N +Bernauer 1.02 Tomalak $R_{2\gamma}$ 1.01 **OLYMPUS** 0.99 (Doris ring @ DESY) 0.98 0.97 0.50.30.40.6 0.70.80.91 ϵ 0.52.0 $\frac{1.5}{\left[\left(\text{GeV}/c\right)^2\right]}$ 0.01.0 Q^2 OLYMPUS N 1.04 $N+\Delta$ 1.02 $R_{2\gamma}$ What is going on 1.00 at low Q^2 ? 0.98 *E* = 2.01 GeV 0.7 0.8 0.4 0.5 0.6 0.9 1.0 0.3

ε

TPE effect on ratio of e^+p 1.05Main spectrometer 12° telescopes Correlated uncertainty 1.04 to *e*⁻*p* cross sections Blunden Nonl 1.03 Blunden N +Bernauer 1.02 Tomalak $R_{2\gamma}$ 1.01 **OLYMPUS** 0.99 (Doris ring @ DESY) 0.98 0.97 0.30.50.6 0.80.40.70.91 ϵ 0.52.0 $\frac{1.5}{\left[\left(\text{GeV}/c\right)^2\right]}$ 0.0 1.0 Q^2 N OLYMPUS 1.04 $N+\Delta$ 1.02 $R_{2\gamma}$ 1.00 Includes systematic errors 0.98 *E* = 2.01 GeV 0.8 0.4 0.5 0.6 0.7 0.9 1.0 0.3

Comparing theory and experiment

Allowing normalization to float

		No normalization		With normalization			
	Data set	χ^2_{ν}	ν	$\chi^2_{ u}$	ν	\mathcal{N}	$\left(\frac{\mathcal{N}-1}{\delta R_{2\gamma}^{\rm norm}}\right)$
Model: $\delta_{\gamma\gamma} = 0$							
	VEPP-3	7.97	4	7.97	4	_	—
	CLAS	0.99	12	1.25	11	1.0012	0.40
	OLYMPUS	0.64	20	0.68	19	1.0034	0.76
	All	1.57	36	1.73	34	—	—
Model: Blunden & Melnitchouk [54]							
	VEPP-3	2.62	4	2.62	4	_	_
	CLAS	0.90	12	0.91	11	1.0032	1.07
	OLYMPUS	1.57	20	0.64	19	1.0082	1.82
	All	1.46	36	0.96	34	—	—
Model: Borisyuk & Kobushkin [58]							
	VEPP-3	2.28	4	2.28	4	_	_
	CLAS	1.02	12	0.94	11	1.0038	1.27
	OLYMPUS	2.15	20	0.75	19	1.0097	2.16
	All	1.79	36	1.00	34	_	_
Model: Bernauer et al. [35]							
	VEPP-3	1.90	4	1.90	4	_	—
	CLAS	0.74	12	0.90	11	0.9985	-0.40
	OLYMPUS	0.46	20	0.51	19	1.0019	0.42
	All	0.71	36	0.80	34	—	—

Allowing normalization to float

- For CLAS and OLYMPUS, allow normalization to float, with a penalty determined by normalization uncertainty of each data set
- Rules out no-TPE hypothesis at > 90% level

$\delta_{\gamma\gamma}$ plot vs. Q^2 and ε showing constant energy slices (in GeV)

E = 2-3 GeV is optimal for full coverage

$R_{2\gamma}$ for fixed E = 3.0 GeV

Е

Additional theoretical work

- Include πN spin 1/2 and 3/2 resonances
 + background using MAID helicity amplitudes
- Includes a finite width
- $\bullet \, P_{33} \text{ and } S_{11} \text{ dominate}$
- Contributions tend to cancel, in qualitative agreement with Kondratyuk & Blunden (2007) result
- Not a full dispersive calculation
- Sum of monopoles form factors is limiting

Borisyuk & Kobushkin, PRC92, 035204 (2015)

- \bullet Also include resonant and background πN states using MAID helicity amplitudes
- Full dispersive analysis
- $\bullet\,\pi N$ continuum handled in unphysical region by analytic continuation from physical region
- Limited (for now) to relatively low Q^2 (0.064 $\leq Q^2 \leq 1 \text{ GeV}^2$)

Other possible contributions

- Proportional to electron mass m_e
- Small for ep scattering, but may be important for μp (MUSE)
- May be important at very low Q^2 , or for atomic physics (charge radius problem)

Summary

- Lots of interesting new theoretical work motivated by new experimental results
- Dispersive method only feasible approach, with connection to data in forward angle limit
 - A similar approach is essential for the γZ box in Qweak parity-violation kinematics
- Efforts underway to incorporate electroproduction data throughout the resonance region, including background
 - In forward angle limit the dispersive approach allows one to use total photonuclear cross section data (Gorchtein)
- Clear need for definitive e^+p measurements at high Q^2 , low ε