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GPDs and DVCS

4

GPD

x+ ⇠

x� ⇠

t

• x=average longitudinal momentum fraction
• 2ξ=average longitudinal momentum transfer
• t=four-momentum transfer squared

H̃T (x, ⇠, t)

HT (x, ⇠, t)

quark-helicity flip twist-2 GPDs

ẼT (x, ⇠, t)

ET (x, ⇠, t)

nucleon helicity flipnucleon helicity  
conservation

quark-helicity conserving twist-2 GPDs

spin independent

spin dependentH̃(x, ⇠, t) Ẽ(x, ⇠, t)

E(x, ⇠, t)H(x, ⇠, t)

J = lim
t!0

1

2

Z 1

�1
dx x [H(x, ⇠, t) + E(x, ⇠, t)]

X. Ji, Phys. Rev. Lett. 78 (1997) 610



GPDs and DVCS

4

GPD

DVCS

x+ ⇠

x� ⇠

t



GPDs and DVCS

4

GPD

DVCS

x+ ⇠

x� ⇠

t



GPDs and DVCS

4

GPD

Bethe-HeitlerDVCS

x+ ⇠

x� ⇠

t



GPDs and DVCS

4

GPD

Bethe-HeitlerDVCS
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d� / |⌧BH |2 + |⌧DV CS |2+ ⌧DV CS⌧
⇤
BH + ⌧⇤DV CS⌧BH

|⌧DV CS |2 =

1

Q2

(
2X

n=0

cDV CS
n cos(n�) + � sDV CS

1 sin(�)

)

|⌧BH |2 =

KBH

P1(�)P2(�)

(
2X

n=0

cBH
n cos(n�)

)

I =

�el KI
P1(�)P2(�)

(
3X

n=0

cIn cos(n�) + �
2X

n=1

sIn sin(n�)

)

calculable with knowledge Pauli & Dirac form factors

coefficients: bilinear in GPDs 

coefficients: linear in GPDs 

Unpolarized nucleon 
Longitudinally polarized lepton beam 
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DVCS cross section

M

1,1 = F1(t)H(⇠, t) +
xB

2� xB
(F1(t) + F2(t)) H̃(⇠, t)� t

4M2
p

F2(t)E(⇠, t)

I =

�el KI
P1(�)P2(�)

(
3X

n=0

cIn cos(n�) + �
2X

n=1

sIn sin(n�)

)

sI1 / =M1,1cI1 / <M1,1

CFF          =convolution GPD x hard scattering amplitudeH, H̃, E

At LO:      direct access to GPDs at  
             convolution integral over 
             + access to D-term  

= x = ±⇠

<
x
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as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

+ 1
Q2 sDVCS

1 sin φ

1
P1(φ)P2(φ)

[

KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]

+ 1
Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
1

Q2 sDVCS
1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)

– 6 –
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Figure 4: The cos(nφ) amplitude (n = 0–3) of the beam-charge asymmetry AC, extracted from
the 1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB,
and Q2. The error bars (bands) represent the statistical (systematic) uncertainties. The theoretical
calculations are based on the models that are unable to describe the data in Fig. 2. For the VGG
model the parameter settings bval = ∞ and bsea = 1 are used and the contribution from the D–term
is set to zero. The bottom row shows the fractional contribution of associated BH production as
obtained from a MC simulation.

helicity-flip GPDs, is found to be consistent with zero. No striking additional features are

observed in Fig. 5 where the cos(nφ) amplitudes are shown as a function of −t for three

distinct xB ranges.

The theoretical calculations shown in Fig. 4 are based on either the Dual-GT or the

VGG model. For the VGG model the parameter settings bval = ∞ and bsea = 1 are used

and the contribution from the D–term is set to zero, as only this set of parameters yields

a good description of the BCA data [24, 25]. Note that the same set, in particular the

setting bsea = 1, leads to amplitudes with the largest magnitude among those represented

in the bands in the top row of Fig. 2, i.e., it clearly does not describe the data related to

the imaginary part of the DVCS amplitude. It appears that additional degrees of freedom

– 14 –
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helicity-flip GPDs, is found to be consistent with zero. No striking additional features are

observed in Fig. 5 where the cos(nφ) amplitudes are shown as a function of −t for three

distinct xB ranges.

The theoretical calculations shown in Fig. 4 are based on either the Dual-GT or the

VGG model. For the VGG model the parameter settings bval = ∞ and bsea = 1 are used

and the contribution from the D–term is set to zero, as only this set of parameters yields

a good description of the BCA data [24, 25]. Note that the same set, in particular the

setting bsea = 1, leads to amplitudes with the largest magnitude among those represented

in the bands in the top row of Fig. 2, i.e., it clearly does not describe the data related to

the imaginary part of the DVCS amplitude. It appears that additional degrees of freedom
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Figure 5: The cos(nφ) amplitude (n = 0–3) of the beam-charge asymmetry AC, extracted from the
1996–2005 hydrogen data as a function of −t for three xB ranges. The error bars (bands) represent
the statistical (systematic) uncertainties.

in the calculation of the BCA, such as the value assigned to the D–term, allow the VGG

model to be tuned to resemble the BCA data. Similarly, the Dual-GT model does not

describe the data in Fig. 2 but is in reasonable agreement with the BCA data shown in

Fig. 4. (The sudden increase of the cos φ amplitude predicted by this model in the highest

xB and Q2 bins might be due to the fact that this model is designed for small and medium

values of xB up to 0.2.) While the increase {decrease} of the cos φ {cos(0φ)} amplitude

with −t is well reproduced within these models, the contribution of associated processes

not included in these models is expected to also increase with −t as shown in the bottom

row.

7. Summary

Previously unmeasured charge-difference and charge-averaged beam-helicity asymmetries

in hard electroproduction of real photons from an unpolarized proton target are extracted
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as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←
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KI
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n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑
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sI
n sin(nφ)
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cBH
n cos(nφ) +

1

Q2
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n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
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KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2
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n=0

cDVCS
n cos(nφ)

(2.4)
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1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).
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]
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n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton
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bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)
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Figure 2: The first (second) row shows the sinφ amplitude of the beam-helicity asymmetry ALU,I

(ALU,DVCS), which is sensitive to the interference term (squared DVCS term), extracted from the
1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB, and Q2.
The third row shows the sin 2φ amplitude of ALU,I. The error bars (bands) represent the statistical
(systematic) uncertainties. Not included is a 2.8% scale uncertainty due to the beam polarization
measurement. The calculations are based on the recently corrected minimal implementation [33, 34]
of a dual-parameterization GPD model (Dual–GT) and on a GPD model [30, 38] based on double–
distributions (VGG). Both models use a Regge–motivated t-dependence. The band for the VGG
model results from varying the parameters bval and bsea between unity and infinity. The bottom row
shows the fractional contribution of associated BH production as obtained from a MC simulation.

a D–term [39], where the kernel of the double distribution contains a profile function [40, 41]

that determines the dependence on ξ, controlled by a parameter b [42]. In the limit b → ∞
the GPD is independent of ξ. Note that bval (bsea) is a free parameter for the valence

(sea) quarks and thus can be used as a fit parameter in the extraction of GPDs from

hard-electroproduction data.

In each kinematic bin, a range of theoretical predictions was calculated [43] by varying

the model parameters of only the GPD H, since these data are sensitive mostly to this

GPD as explained above. Variants of the model are distinguished by differences in the t

dependence of the GPD H, for which either a simple ansatz is used where the t dependence

factorizes from the dependence on the other kinematic variables, or the Regge–motivated

ansatz is employed. Since the differences are found to be small for all amplitudes shown

in Fig. 2, only the results based on the latter ansatz (VGG Regge) are displayed. The
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Similar considerations for  
beam-charge and beam-averaged  

target-spin asymmetries  
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Beam-charge asymmetry on nuclear 
targets

1414

• Nuclear DVCS: (anti-)shadowing, EMC effect 

• New nuclear effect, absent in   forward DIS amplitude? 

• Coherent scattering: mesonic degrees of freedom: 

✦ non-linear A dependence of first moment of D-term 

✦ at HERMES, beam-charge asymmetry grows with increasing A:        increases. 
Absence of mesons: asymmetry independent of A.   

•  Incoherent scattering: similar to proton GPDs 
                          (V. Guzey and M. Siddikov, J. Phys. G 32 (2006) 251)

=

⌧DVCS

coherent scattering

incoherent scattering



Beam-charge asymmetry on nuclear 
targets

1515

 ] 2-t [ GeV
0 0.02 0.04 0.06 0.08 0.1 0.12

D
IS

 /N γ
10

00
 N

0

0.05

0.1

0.15

Monte Carlo sum

coherent BH

incoherent BH

associated BH

Xe

coherent 
enrichedincoherent 

enriched



Beam-charge asymmetry on nuclear 
targets

1515

 ] 2-t [ GeV
0 0.02 0.04 0.06 0.08 0.1 0.12

D
IS

 /N γ
10

00
 N

0

0.05

0.1

0.15

Monte Carlo sum

coherent BH

incoherent BH

associated BH

Xe

coherent 
enrichedincoherent 

enriched

-0.05

0

0.05

0

0.05

0.1

0.15

1 10 10
2

A
Cco

sφ
 (−

t <
 −

t co
h.

)
A

Cco
sφ

 (−
t >

 −
t in

co
h.

)

nuclear mass number A

-0.4

-0.2

0

-0.4

-0.2

0

1 10 10
2

A
LU

,(I
,+

)
si

nφ
 (−

t <
 −

t co
h.

)
A

LU
,(I

,+
)

si
nφ

 (−
t >

 −
t in

co
h.

)

nuclear mass number A

coherent enriched

incoherent enriched
 

No dependence on A 
observed

HERMES, Phys. Rev. C 81 (2010) 035202



(TMD) PDFs



Semi-inclusive DIS production



Semi-inclusive DIS cross section

18

�h
(�,�S) = �h

UU

n

1 + 2hcos(�)ihUU cos(�) + 2hcos(2�)ihUU cos(2�)

+ �l 2hsin(�)ihLU sin(�)

+ SL

h

2hsin(�)ihUL sin(�) + 2hsin(2�)ihUL sin(2�)

+ �l

⇣

2hcos(0�)ihLL cos(0�) + 2hcos(�)ihLL cos(�)
⌘i

+ ST

h

2hsin(�� �S)ihUT sin(�� �S) + 2h sin(�+ �S)ihUT sin(�+ �S)

+ 2hsin(3�� �S)ihUT sin(3�� �S) + 2hsin(�S)ihUT sin(�S)

+ 2hsin(2�� �S)ihUT sin(2�� �S)

+ �l

⇣

2hcos(�� �S)ihLT cos(�� �S)

+ 2hcos(�S)ihLT cos(�S) + 2hcos(2�� �S)ihLT cos(2�� �S)

⌘io



Semi-inclusive DIS cross section

longitudinal target  
polarization

beam 
polarization

transverse target  
polarization

18

�h
(�,�S) = �h

UU

n

1 + 2hcos(�)ihUU cos(�) + 2hcos(2�)ihUU cos(2�)

+ �l 2hsin(�)ihLU sin(�)

+ SL

h

2hsin(�)ihUL sin(�) + 2hsin(2�)ihUL sin(2�)

+ �l

⇣

2hcos(0�)ihLL cos(0�) + 2hcos(�)ihLL cos(�)
⌘i

+ ST

h

2hsin(�� �S)ihUT sin(�� �S) + 2h sin(�+ �S)ihUT sin(�+ �S)

+ 2hsin(3�� �S)ihUT sin(3�� �S) + 2hsin(�S)ihUT sin(�S)

+ 2hsin(2�� �S)ihUT sin(2�� �S)

+ �l

⇣

2hcos(�� �S)ihLT cos(�� �S)

+ 2hcos(�S)ihLT cos(�S) + 2hcos(2�� �S)ihLT cos(2�� �S)

⌘io



Semi-inclusive DIS cross section

beam 
polarization

target 
polarization

longitudinal target  
polarization

beam 
polarization

transverse target  
polarization

18

�h
(�,�S) = �h

UU

n

1 + 2hcos(�)ihUU cos(�) + 2hcos(2�)ihUU cos(2�)

+ �l 2hsin(�)ihLU sin(�)

+ SL

h

2hsin(�)ihUL sin(�) + 2hsin(2�)ihUL sin(2�)

+ �l

⇣

2hcos(0�)ihLL cos(0�) + 2hcos(�)ihLL cos(�)
⌘i

+ ST

h

2hsin(�� �S)ihUT sin(�� �S) + 2h sin(�+ �S)ihUT sin(�+ �S)

+ 2hsin(3�� �S)ihUT sin(3�� �S) + 2hsin(�S)ihUT sin(�S)

+ 2hsin(2�� �S)ihUT sin(2�� �S)

+ �l

⇣

2hcos(�� �S)ihLT cos(�� �S)

+ 2hcos(�S)ihLT cos(�S) + 2hcos(2�� �S)ihLT cos(2�� �S)

⌘io



Semi-inclusive DIS cross section

leading twist

beam 
polarization

target 
polarization

longitudinal target  
polarization

beam 
polarization

transverse target  
polarization

18

�h
(�,�S) = �h

UU

n

1 + 2hcos(�)ihUU cos(�) + 2hcos(2�)ihUU cos(2�)

+ �l 2hsin(�)ihLU sin(�)

+ SL

h

2hsin(�)ihUL sin(�) + 2hsin(2�)ihUL sin(2�)

+ �l

⇣

2hcos(0�)ihLL cos(0�) + 2hcos(�)ihLL cos(�)
⌘i

+ ST

h

2hsin(�� �S)ihUT sin(�� �S) + 2h sin(�+ �S)ihUT sin(�+ �S)

+ 2hsin(3�� �S)ihUT sin(3�� �S) + 2hsin(�S)ihUT sin(�S)

+ 2hsin(2�� �S)ihUT sin(2�� �S)

+ �l

⇣

2hcos(�� �S)ihLT cos(�� �S)

+ 2hcos(�S)ihLT cos(�S) + 2hcos(2�� �S)ihLT cos(2�� �S)

⌘io
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Figure 1. Kinematics of the process. q is the virtual photon, k and k

0 are the initial and struck quarks, k? is the

quark transverse component. Ph is the final hadron with a p? component, transverse with respect to the fragmenting

quark k

0 direction.

the beam energy becomes, the more serious the inaccuracies of the parton model have to be

taken. On the other hand, the “fully di↵erential” cross section Eq. (3.2) of the generalized

parton model allows us to include in our Monte Carlo both transverse momentum and

the physical energy and momentum phase space constraints. We used the widely accepted

parton model approximation of setting the initial parton on-shell (assumption that virtual

photon interacts with an on-mass shell quark)3. But it is important to emphasize that

the approximations we have made, which are consistent with a generalized parton model

framework, enable us to implement a Monte Carlo that incorporates the correct phase

space momentum constraints and satisfies the requirements we outlined in this section.

Thus, our Monte Carlo simulation allows us to take the factorized form of the gener-

alized parton model cross section Eq. (3.2) as a basis and then to impose four-momentum

conservation for the partons according to Fig. 1, assuming the initial quark is on-shell with

non-zero mass. We also take a non-zero target mass into account. This procedure does

not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned

kinematic approximations in the parton model.

Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the

3
The confined quark has a non-zero virtuality. Such e↵ects in Monte Carlo generators have been studied

in Ref. [62].
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the beam energy becomes, the more serious the inaccuracies of the parton model have to be

taken. On the other hand, the “fully di↵erential” cross section Eq. (3.2) of the generalized

parton model allows us to include in our Monte Carlo both transverse momentum and

the physical energy and momentum phase space constraints. We used the widely accepted

parton model approximation of setting the initial parton on-shell (assumption that virtual

photon interacts with an on-mass shell quark)3. But it is important to emphasize that

the approximations we have made, which are consistent with a generalized parton model

framework, enable us to implement a Monte Carlo that incorporates the correct phase

space momentum constraints and satisfies the requirements we outlined in this section.

Thus, our Monte Carlo simulation allows us to take the factorized form of the gener-

alized parton model cross section Eq. (3.2) as a basis and then to impose four-momentum

conservation for the partons according to Fig. 1, assuming the initial quark is on-shell with

non-zero mass. We also take a non-zero target mass into account. This procedure does

not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned

kinematic approximations in the parton model.

Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the

3
The confined quark has a non-zero virtuality. Such e↵ects in Monte Carlo generators have been studied

in Ref. [62].

– 10 –



TMD 
PDF

�

TMD 
 FF

h

FXY / C [TMD PDF(x, k?)⇥ TMD FF (z, p?)]

TMD PDFs and fragmentation functions (FFs)

19

Azimuthal amplitudes related to structure functions     : 

2h sin(�+ �S)ihUT = ✏F sin(�+�S)
UT

FXY

U L T

U

L

T

quark polarization

nu
cl
eo

n 
po

la
riz

at
io
n

f1

h1T

g1L

h?
1

h?
1L

h?
1Tf?

1T g?1T

U L T

U

quark polarization
ha

dr
on

 p
ol
ar

iz
at

io
n

D1 H?
1

p�

k�

k�

�k

�̃

x̃

ỹ
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framework, enable us to implement a Monte Carlo that incorporates the correct phase

space momentum constraints and satisfies the requirements we outlined in this section.

Thus, our Monte Carlo simulation allows us to take the factorized form of the gener-

alized parton model cross section Eq. (3.2) as a basis and then to impose four-momentum

conservation for the partons according to Fig. 1, assuming the initial quark is on-shell with

non-zero mass. We also take a non-zero target mass into account. This procedure does

not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned
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Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect
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Survive integration over transverse momentum 

         : via (semi-)inclusive DIS 

     : via semi-inclusive DIS 

f1, g1L
h1T

h1T • convolution via single-hadron semi-inclusive DIS 
• direct production via  

✦ two-hadron production 

✦              = twist-3hsin(�S)i
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• final-state-interactions    azimuthal asymmetries
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Sivers amplitudeskTkT

C[f?,q
1T ⇥Dq

1] • Sivers function:  
• requires non-zero orbital angular momentum (model) 
• naive T-odd 
• final-state-interactions    azimuthal asymmetries

FSI

HERMES>COMPASS 
Q2 evolution?

• π+: 
• positive -> non-zero orbital angular momentum 
• amplitude dominated by u-quark scattering: 

• π-: 
• consistent with zero  
• u and d quark cancelation 

• K+: 
• larger amplitude than for π+

⇡ �Cf?,u
1T ⇥Du!⇡+

1

Cfu
1T ⇥Du!⇡+

1

! f?,u
1T < 0

! f?,d
1T > 0

258 C. Adolph et al. / Physics Letters B 744 (2015) 250–259

Fig. 11. The Sivers asymmetries for positive pions (top) and kaons (bottom) on proton as a function of x, z and ph
T , requiring x > 0.032. The asymmetries are compared to 

HERMES results [14].

Fig. 12. Comparison between the Sivers asymmetries for pions and existing global fits [31–33], in which the COMPASS results for the unidentified hadrons on protons [11]
are included.

Fig. 13. The Sivers asymmetries for pions in different y ranges (left) and z ranges (right), 2010 data.

Phys. Lett. B 744 (2015) 250



Accessing collinear helicity PDFs: 
complementary probes to inclusive γ*DIS

PDF
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h

 Semi-inclusive DIS

 Charged-current DIS

• Fragmentation function     flavour tagging, but additional  
non-perturbative object 

• Reconstruction kinematic variables: initial/scattered lepton 
• Longitudinally polarized beam and polarized target needed

yJB =

P
i(Ei � pz,i)

2Ee
Q2

JB =
|
P

i ~pT,i|2

1� yJB

• No fragmentation functions 
• Probe combinations of flavours different from inclusive γ*DIS 
• Reconstruction kinematic variables:  

initial lepton and detected final-state particles

PDF

e±

W±

⌫e

• Longitudinally polarized target needed 
• Need high enough Q2!

resolution ➘ if more pT missed
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complementary probes to inclusive γ*DIS
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5,p (x) = �ū(x)��d(x) +�c̄(x)��s(x)

g

W�

5,p (x) = ��u(x) +�d̄(x)��c(x) +�s̄(x)
e�

e+

Inclusive DIS, independent of beam charge:



Inclusive DIS production



Longitudinal target single-spin 
asymmetries

AW�

p =
2b gW
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a, b = f(yJB)9
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FIG. 8: [color online] Projected single-spin asymmetries

AW−,p
L (top panel) and AW−,n

L (bottom panel) for
√
S ∼

141GeV compared to LO and NLO calculations using the
DSSV helicity densities. The dotted line shows an alternative
DSSV set which enforces ∆d/d → 1 as x → 1 (see text). The
shaded bands correspond to the ∆χ2 = 8 uncertainty esti-
mates for the DSSV PDFs. Note that a constant c is added
to each bin as indicated.

studying some limiting cases for y, assuming that con-
tributions from strange and charm quarks are negligible.
The results are summarized in Tab. I.

TABLE I: Approximate behavior of the LO single spin asym-
metry (14) for e−p and e−n CC DIS for certain fixed values
of y.

y → 0 y = 1/2 y → 1

AW−,p
L

∆u(x)−∆d̄(x)
u(x)+d̄(x)

4∆u(x)−∆d̄(x)
4u(x)+d̄(x)

∆u(x)
u(x)

AW−,n
L

∆d(x)−∆ū(x)
d(x)+ū(x)

4∆d(x)−∆ū(x)
4d(x)+ū(x)

∆d(x)
d(x)

For large values of x and at all y, e−p and e−n CC DIS
data essentially track the polarization values ∆q/q for u
and d quarks, respectively. In the DSSV fit they approach
1 for ∆u/u and approximately −0.6 for ∆d/d; see Fig. 5
in the second reference of [7]. At smaller values of x,
where valence quark contributions are small and ∆q ≃
∆q̄, various combinations of light sea quark polarizations
can be studied depending on y; see Tab. I. Only at large
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FIG. 9: [color online] χ2 profiles for the first moments of the
helicity PDFs ∆u, ∆d, ∆ū, and ∆d̄ truncated to the region
0.05 ≤ x ≤ 1 at Q2 = 10GeV2 and evaluated with (solid
lines) and without (dashed lines) the projected CC DIS data
shown in Fig. 8. The dotted line indicates the ∆χ2 tolerated
in the original DSSV analysis [7].

y, data are essentially sensitive to ∆ū/ū and ∆d̄/d̄ for
e−p and e−n scattering, respectively.

While ∆u/u at large x is pretty well constrained from
existing fixed-target DIS data, there are theoretical ex-
pectations based on “helicity retention” [44] that ∆d/d
should saturate at 1 as x → 1. Such a behavior would
require a dramatic change in the trend seen with present
data [7], which constrain ∆d/d to negative values around
−0.5 up to x ≃ 0.6 for the modest Q2 values accessible in
fixed-target experiments. From the considerations above,

measurements of AW−,n
L would be particularly suited to

study a possible sign change in ∆d/d at large values of
x.

To make this more quantitative, the dotted lines in
Fig. 8 are obtained with a special set from DSSV [7]
where ∆d/d → 1 is enforced by adding extra terms to
the functional form assumed in their analysis, leading to
a sign change at x ≃ 0.67 at a scale ofQ2 = 1GeV2. Note
that such a behavior is way outside the DSSV uncertainty
estimates (∆χ2 = 8) based on their standard functional
form [7], which are indicated as shaded bands in each x
bin in Fig. 8.

Since CC DIS probes the PDFs at rather large scales,
QCD evolution shifts the assumed node in ∆d/d to
smaller x values, such that it significantly impacts the-

oretical expectations for AW−,n
L already at x ≃ 0.4. As

expected, AW−,p
L changes only very little, mainly due to

minor adjustments in ∆u and the sea quark densities in
the special DSSV set in order to respect sum rules. We

• Charged currents @ EIC: 
  E. Aschenauer et al., PRD 88 (2013) 114025

 

• Charged currents @ EIC: 
   PRD 88 (2013) 114025 
• DJANGOH 
• Detector effects,  
  radiative corrections 
• DSSV analysis @ NLO

DSSV+: Prog. Part. Nucl. Phys. 67, 251 (2012). 
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A2 and g2

HERMES, EPJ C 72 (2012) 1921

d2 = 0.0148± 0.0096(stat)± 0.0048(syst)

d2 = 0.0032± 0.0017

HERMES:                       

E143+155:                       
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Furthermore…



Λ: The Final State Polarimeter

In Λ rest frame, proton prefers to be emitted along
Λ spin direction parity-violating weak decay

� p

/

R
... apply
parity ...

�p

/

R ... and
rotate ...

� p

/

R

dN
dΩp

∼ (1 + αP⃗Λ · k̂p) = (1 + αPΛ cos θp)

α = 0.642 ... θp is relative to true Λ polarization direction

Λ spin structure

Constituent q Model SU(3) from nucleon∗
∆u ∆d ∆s ∆u ∆d ∆s

p +4/3 -1/3 0 +0.83 -0.43 -0.10
n -1/3 +4/3 0 -0.43 +0.83 -0.10

∗ Burkardt & Jaffe : use measured p, n values +
SU(3)-symmetric flavour rotation to obtain hyperon values

Λ 0 0 1 -0.17 -0.17 +0.63
Σ0 +2/3 +2/3 -1/3 +0.37 +0.37 -0.43
Ξ0 -1/3 0 +4/3 -0.43 -0.10 0.83

Longitudinal Λ Polarization

qe

e’ Λ

z ≡ EΛ
ν

Using polarized beam and unpolarized target, measure
longitudinal spin transfer in fragmentn from struck q → Λ

PΛ = Pbeam · D(y) DLL′

final state
Λ polarization

✁
✁
✁
✁✕

struck quark
polarization

✻

spin transfer
❆

❆
❆

❆❑

DLL′ =
∑

e2
qq(x)∆DΛ

q (z)
∑

e2
qq(x)DΛ

q (z)
=

∑ ∆DΛ
q (z)

DΛ
q (z)

· ωΛ
q (x)

”purity”
❆

❆❆❑

Spin transfer DLL′ sensitive to

• helicity conservation of quarks in fragmentation
• spin structure ∆qΛ of Λ itself

Spin-dependent fragmentation functions

28

Probe with longitudinal spin: polarization transfer to quark      fragmentation to Λ 

Spin-dependent fragmentation functions G1, H1, G̃T

parity-violating weak decay of Λ:  
in Λ rest frame, proton preferably emitted along Λ spin direction



Two-photon exchange in inclusive DIS
• transversely pol. target 
• unpolarized beam
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FIG. 1: The !! dependence of the sin"" amplitudes #
sin#!

$%

measured with an electron beam (top) and a positron beam
(center). The open (closed) circles identify the data with
$2 < 1 GeV2 ($2 > 1 GeV2). The error bars show the
statistical uncertainties, while the error boxes show the sys-
tematic uncertainties. The asymmetries integrated over !!

are shown on the left. Bottom panel: average $2 vs. !! from
data (squares), and the fraction of elastic background events
to the total event sample from a Monte Carlo simulation (tri-
angles).

for electrons and positrons. In both cases the asymme-
tries are consistent with zero within their uncertainties.
Due to the kinematics of the experiment, the quantities
!! and ⟨"2⟩ are strongly correlated, as shown in the
bottom panel of Fig. 1.

The resulting amplitudes were not corrected for kine-
matic migration of inelastic events due to detector smear-
ing and higher order QED effects or contamination by
the radiative tail from elastic scattering. The latter
correction requires knowledge of the presently unknown
elastic two-photon asymmetry. Instead, the contribu-
tion of the elastic radiative tail to the total event sam-
ple was estimated from a Monte Carlo simulation based
on the Lepto generator [28] together with the Rad-

gen [29] determination of QED radiative effects and with
a Geant [30] based simulation of the detector. The elas-

tic fraction is shown in the lower panel of Fig. 1. It
reaches values as high as about 35% in the lowest !!

bin, where # is large (⟨#⟩ ≃ 0.80) and hence radiative
corrections are largest [31]. The elastic fraction rapidly
decreases towards high !!, becoming less than 3% for
!! > 0.1.
The systematic uncertainties, shown in the fourth col-

umn of Table II and as error boxes in Fig. 1, include
contributions due to corrections for misalignment of the
detector, beam position and slope at the interaction point
and bending of the beam and the scattered lepton in the
transverse holding field of the target magnet. They were
determined from a high statistics Monte Carlo sample
obtained from a simulation containing a full description
of the detector, where an artificial spin-dependent az-
imuthal asymmetry was implemented. Input asymme-
tries being zero or as small as 10−3 were well reproduced
within the statistical uncertainty of the Monte Carlo sam-
ple, which was about five times smaller than the statis-
tical uncertainty of the data. For each measured point
the systematic uncertainty was obtained as the maximum
value of either the statistical uncertainty of the Monte
Carlo sample or the difference between the input asym-
metry and the extracted one. Systematic uncertainties
from other sources like particle identification or trigger
efficiencies were found to be negligible.
The transverse single-spin asymmetry amplitudes

&sin"!

#$ for electron and positron beams integrated over
!! are given separately for the “low-"2 region” and the
“DIS region” in Table II along with their statistical and
systematic uncertainties. All asymmetry amplitudes are
consistent with zero within their uncertainties, which in
the DIS region are of order 10−3. The only exception
is the low-"2 electron sample, where the asymmetry is
1.9 standard deviations different from zero. No hint of a
sign change between electron and positron asymmetries
is observed within uncertainties.
In conclusion, single-spin asymmetries were measured

in inclusive deep-inelastic scattering at Hermes with un-
polarized electron and positron beams and a transversely
polarized hydrogen target with the goal of searching for
a signal of two-photon exchange. No signal was found
within the uncertainties, which are of order 10−3.
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beam !
sin!!

"# "!
sin!!

"# (stat.) "!
sin!!

"# (syst.) ⟨#$⟩ ⟨$2⟩
×10−3 ×10−3 ×10−3 [GeV2]

%+ -0.61 3.97 0.63
0.02 0.68

%− -6.55 3.40 0.63
%+ -0.60 1.70 0.29

0.14 2.40
%− -0.85 1.50 0.29

TABLE II: The integrated transverse single-spin asymmetry
amplitude !sin!!

"# with its statistical and systematic uncer-
tainties and the average values for #$ and $2 measured sep-
arately for electron and positron beams in the two $2 ranges
$2 < 1 GeV2 (upper rows) and $2 > 1 GeV2 (lower rows).
The systematic uncertainties contain the effects of detector
misalignment and beam position and slope at the target, as
estimated by a Monte Carlo simulation, but not the scale
uncertainties from the target polarization which amounts to
9.3% (6.6%) for the electron (positron) sample. Also, the
results are not corrected for smearing, radiative effects and
elastic background events.
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Summary

Usage of e+ and e- beam offers advantages to access  

• GPDs in DVCS measurements: beam charge but also spin asymmetries 

• helicity distributions (collinear) 

• g2 structure function 

• spin-dependent, collinear fragmentation functions 

• two-photon exchange in elastic and deep-inelastic scattering
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