Constraining Coulomb Corrections in Deep Inelastic Scattering with Positrons

Dave Gaskell Jefferson Lab

International Workshop on Physics with Positrons at Jefferson Lab September 12-15, 2017

Heavy Nuclei and Coulomb Distortion

Electrons scattering from nuclei can be accelerated/decelerated in the Coulomb field of the nucleus

→ This effect is in general NOT included in most radiative corrections procedures
 → Important to remove/correct for apparent changes in the cross section due to Coulomb effects

In a very simple picture – Coulomb field induces a change in kinematics in the reaction

$$E_{e} \rightarrow E_{e} + V_{0} \qquad \qquad V_{0} = 3\alpha(Z-1)/2R$$
$$E_{e}' \rightarrow E_{e}' + V_{0} \qquad \qquad \uparrow$$

Electrostatic potential energy at center of nucleus

Coulomb Corrections in QE Processes

Importance of Coulomb Corrections in quasi-elastic processes well known

Gueye et al., PRC60, 044308 (1999)

Distorted Wave Born Approximation calculations are possible – but difficult to apply to experimental cross sections

→Instead use Effective Momentum Approximation (EMA) tuned to agree with DWBA calculations

EMA: $E_e \rightarrow E_e + V_0$ $E_e' \rightarrow E_e' + V_0$ with "focusing factor" $F^2 = (1+V_0/E)$ $V_0 \rightarrow (0.7-0.8)V_0$, $V_0 = 3\alpha(Z-1)/2R$ $V_0 = 10$ MeV for Cu, 20 MeV for Au

[Aste et al, Eur.Phys.J.A26:167-178,2005, Europhys.Lett.67:753-759,2004]

Coulomb Corrections in Inelastic Scattering

- E. Calva-Tellez and D.R. Yennie, Phys. Rev. D 20, 105 (1979) •
 - Perturbative expansion in powers of strength of Coulomb field Effect of order $\rightarrow -\frac{Z\alpha}{12} \frac{(Q^2)^2}{\nu^2} \frac{(E_e + E'_e)}{E_e E'_e} < r >$

 - "For any reasonable kinematics, this is completely negligible"
- B. Kopeliovich et al., Eur. Phys. J. A 11, 345 (2001) ٠
 - Estimates non-zero effect using Eikonal approximation \rightarrow applies estimates to vector meson production, not DIS
- O. Nachtmann, Nucl. Phys. B 18, 112 (1970) •
 - Coulomb Corrections for neutrino reactions
 - DWBA calculation that results in modifications to structure functions \rightarrow "at most 5%" effects for energies > 1 GeV
 - Final state particle only

Application: EMC Effect

JLab E03-103 (6 GeV) measured σ_A / σ_D for light and heavy nuclei \rightarrow Study modification of quark distributions in nuclei $\rightarrow EMC$ effect

Application: EMC Effect

Coulomb corrections significantly larger for JLab data \rightarrow 5-10%, SLAC \rightarrow 1-2%

Jefferson Lab

with Coulomb Corrections (both data sets)

Application: *R_A*-*R_D*

DIS/Inelastic cross section:

$$\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4 v} \left[F_2(v,Q^2) \cos^2 \frac{\theta}{2} + \frac{2}{Mv} F_1(v,Q^2) \sin^2 \frac{\theta}{2} \right]$$
$$F_2(x) = \sum_i e_i^2 x q_i(x) \qquad \longleftarrow \qquad \text{Quark distribution functions}$$

 $\frac{d\sigma}{d\Omega dE'} = \Gamma \Big[\sigma_T(v,Q^2) + \varepsilon \sigma_L(v,Q^2) \Big] \qquad F_1 \alpha \sigma_T \quad F_2 \text{ linear combination of } \sigma_T \text{ and } \sigma_L$

Measurements of EMC effect often assume $\sigma_{A/}\sigma_D = F_2^A/F_2^D$ \rightarrow this is true if $R = \sigma_{L/}\sigma_T$ is the same for A and D

SLAC E140 set out to measure $R = \sigma_{L}/\sigma_{T}$ in deuterium and the nuclear dependence of *R*, i.e., measure $R_{A} - R_{D}$

R_A-R_D: E140 Re-analysis

E140 measured ε dependence of cross section ratios σ_A/σ_D for

x=0.2, 0.35, 0.5 $Q^2 = 1.0, 1.5, 2.5, 5.0 \text{ GeV}^2$ Iron and Gold targets

 $R_A - R_D$ consistent with zero within errors

[E140 Phys. Rev. D 49 5641 (1993)]

No Coulomb corrections were applied

R_A-R_D: E140 Re-analysis

Re-analyzed E140 data using Effective Momentum Approximation for published "Born"-level cross sections

→ Total consistency requires application to radiative corrections model as well

Including Coulomb Corrections yields result 1.5 σ from zero when averaged over **x**

$R_A - R_D$ at x=0.5

Interesting result from E140 reanalysis motivated more detailed study $\rightarrow x=0.5, Q^2=5 \text{ GeV}^2$

→ Include E139 Fe data
 → Include JLab data
 Cu, Q²=4-4.4 GeV²

Normalization uncertainties between experiments treated as extra point-to-point errors

No Coulomb Corrections \rightarrow combined analysis still yields $R_A-R_D \sim 0$

No Coulomb Corrections

$R_A - R_D$ at x=0.5

Interesting result from E140 reanalysis motivated more detailed study $\rightarrow x=0.5, Q^2=5 \text{ GeV}^2$

→ Include E139 Fe data
 → Include JLab data
 Cu, Q²=4-4.4 GeV²

Normalization uncertainties between experiments treated as extra point-to-point (between data sets) errors

with Coulomb Corrections

Application of Coulomb Corrections \rightarrow R_A-R_D 1.2 σ from zero

$R_A - R_D$ at Large x

- Evidence is suggestive that $R_A R_D < 0$ at large x
 - Effect is not large depends on precision of the experimental data
 - Coulomb Corrections are crucial to observation/existence of this effect \rightarrow CC has significant dependence on electron energy, varies between ε settings
- Implications of $R_A R_D < 0$
 - $-F_1$, F_2 not modified in the same way in nuclei
 - What does this mean for our understanding of the EMC effect?
 - Parton model: $R=4 < K_T^2 > /Q^2$, $< K_T^2 >$ smaller for bound nucleons? [A. Bodek, PoS DIS2015 (2015) 026]
- Additional data (dedicated measurement) in DIS region required

JLab Experiment 12-14-002

Precision Measurements and Studies of a Possible Nuclear Dependence of $R=\sigma_L/\sigma_T$

[S. Malace, M.E. Christy, D. Gaskell, C. Keppel, P. Solvignon]

Measurements of nuclear dependence of structure functions, R_A - R_D via direct L-T separations

Detailed measurements of x and Q^2 dependence for Copper target \rightarrow A dependence at select kinematics using C and Au

E12-14-002 Experimental Hall C

Excellent control of point-to-point systematic uncertainties required for precise L-T separations
→ Ideally suited for focusing spectrometers

Spectrometers

HMS:

 $d\Omega \sim 6 \text{ msr}, P_0 = 0.5 - 7 \text{ GeV/c}$ $\vartheta_0 = 10.5 \text{ to } 80 \text{ degrees}$ e ID via calorimeter and gasCerenkov

SHMS:

 $d\Omega \sim 4 \text{ msr}, P_0 = 1 - 11 \text{ GeV/c}$ $\vartheta_0 = 5.5 \text{ to } 40 \text{ degrees}$ e ID via heavy gas Cerenkov and calorimeter

Perform L-T separations using same spectrometer for all ϵ points as much as possible

JLab Experiment 12-14-002

E12-14-002 and Coulomb Corrections

Coulomb corrections a key systematic issue for E12-14-002

- → L-T separations require varying epsilon. Smaller epsilon corresponds to smaller beam energies and scattered electron momenta → larger Coulomb corrections
- → Size of Coulomb correction highly correlated with the very effect we are trying to study
- → Need robust tests to verify CC magnitude and epsilon dependence

Testing Coulomb Corrections with Electrons

Coulomb corrections can be tested by measuring target ratios at fixed x and ε \rightarrow Varying Q² allows us to change E/E' and hence size of CC

Fixed **x** required due to EMC effect

$$\frac{\sigma_A}{\sigma_D} = \frac{F_2^A (1 + \epsilon R_A) (1 + R_D)}{F_2^D (1 + R_A) (1 + \epsilon R_D)}$$

Fixed ϵ eliminates potential dependence on R_A - R_D

E12-14-002 Coulomb Corrections Test

Gold target		x=0.5				
3	Q ² (GeV ²)	E (GeV)	E' (GeV)	θ (deg.)	W (GeV)	C _{Coulomb}
0.2	3.48	4.4	0.69	64.6	2.08	11.6%
0.2	9.03	11.0	1.38	45.5	3.10	6.2%
0.7	2.15	4.4	2.11	27.9	1.74	3.5%
0.7	5.79	11.0	4.83	19.0	2.58	1.9%

CC test will measure precise Au/D ratios \rightarrow 2 shifts (16 hours) at 60 µA

Statistics goals: 100k events for deuterium, 50k for gold

- \rightarrow 0.55% uncertainty in ratio (statistics)
- → Effect is potentially large at these kinematics, but want to test to high precision to minimize contribution to point-to-point uncertainties

E12-14-002 Coulomb Corrections Test

CC test will measure precise Au/D ratios \rightarrow 2 shifts (16 hours) at 60 µA

Jefferson Lab Assume point-to-point uncertainty ~ 1% - normalization uncertainty not shown 19

Testing Coulomb Corrections with Positrons

Positron beam at JLab an excellent opportunity for studying Coulomb Corrections in DIS

Key questions:

- 1. Are Coulomb Corrections even relevant for DIS?
 - For QE scattering effects have been clearly observed experimentally clear consensus that CC are required
 - "Makes sense" that they should be needed for DIS, but not a proof
- 2. Is the Effective Momentum Approximation (EMA) adequate/appropriate for DIS?
 - EMA has been checked/optimized in QE scattering via comparisons to DWBA calculations
 - Equivalent calculations for DIS appear to be more challenging and perhaps model dependent

E12-14-002 Coulomb Corrections Test with Positrons

Gold and Deuterium targets				x=0.5			Δ
3	Q ² (GeV ²)	E (GeV)	E' (GeV)	θ (deg.)	W (GeV)	C _{Coulomb}	, p
0.2	3.48	4.4	0.69	64.6	2.08	-11.6%	e
0.2	9.03	11.0	1.38	45.5	3.10	-6.2%	l
0.7	2.15	4.4	2.11	27.9	1.74	-3.5%	E
0.7	5.79	11.0	4.83	19.0	2.58	-1.9%	E

Assume CC for positrons = 1/CC for electrons. In EMA: $E_e \rightarrow E_e + V_0$ (e-) $E_e \rightarrow E_e - V_0$ (e+)

Starting point for CC test w/positrons: E12-14-002 CC test kinematics

- \rightarrow Polarization not required, so currents ~1 μ A hopefully available
- → Magnetic focusing spectrometers still desirable for excellent PID, good control of acceptance
- → Target ratios (Au/D) minimize uncertainty in e+/e- comparison less sensitive to absolute measurement of beam current

Assuming same statistics goals as electron kinematics (100k deuterium, 50k gold) would take 60 * 16 hours = 960 hours \rightarrow 40 days

Can use thicker targets, etc., but this would improve things by about a factor of 4 \rightarrow more modest statistics goals are still useful Jefferson Lab

E12-14-002 Coulomb Corrections Test w/Positrons

Gold larger		X-0.5				
3	Q ² (GeV ²)	E (GeV)	E' (GeV)	θ (deg.)	W (GeV)	C _{Coulomb}
0.2	3.48	4.4	0.69	64.6	2.08	-11.6%
0.2	9.03	11.0	1.38	45.5	3.10	-6.2%
0.7	2.15	4.4	2.11	27.9	1.74	-3.5%
0.7	5.79	11.0	4.83	19.0	2.58	-1.9%

Assuming 1 μ A, 10k for all settings and targets \rightarrow 7 days

E12-14-002 Coulomb Corrections Test w/Positrons

Clearest sign of CC from super-ratio for e+/e-:

R

Additional Coulomb Correction Studies

- More studies could be carried out to further elucidate Coulomb Corrections and provide data to test models (EMA)
 - More targets
 - Light target like carbon would provide useful calibration point where impact of CC expected to be small
 - Another heavy target (like iron or copper) would help verify/quantify Z dependence of effect and correction
 - More kinematics
 - Would be helpful to reproduce a couple E12-14-002 L-T separations with positrons to obtain a full extraction of *R_A-R_D*
 - Example: x=0.5, $Q^2=3$ and $Q^2=5$ GeV²

Summary

- An unpolarized positron beam with currents ~ 1µA would allow precise studies of the relevance and size of Coulomb Corrections in DIS from nuclei
- An experiment could be performed in about 2-4 weeks of beam time that would use a subset of the kinematics from E12-14-002
- Use of target ratios (A/D) allows one to compare electron and positron results directly without requiring rapid switching between electron and positron beams
 - Main requirement is to have beam energy the same as much as possible
- Verification (or not) of the validity of the EMA for DIS has important implications for the nuclear dependence of structure functions, in particular R_A - R_D at large x
- Coulomb corrections also relevant for other reactions
 - Hadronization studies: $e+A \rightarrow e'+\pi+X$
 - x>1, A(e,e') at large Q^2
 - Color transparency: A(e,e'p)/H(e,e'p)

