Weak Neutral Current Studies with Positrons

Seamus Riordan seamus@anl.gov

September 14, 2017

Parity Violation in Electron Scattering

- Weak force couplings provide unique mode to study nature
- Charged current (e.g. β decay) maximally violating, but neutral current mixed by weak mixing angle $\sin^2 \theta_{\rm W}$
- \bullet Arises in low ${\it Q}^2~e^-$ scattering as interference between γ and ${\it Z}$
- Basic object of study is PV asymmetry

Neutral Current Structure and Positrons

Standard e⁻ parity violating asymmetry typically has two terms

$$\begin{split} A &= \frac{R-L}{R+L} \sim \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[D_{\rm f}(\theta) g_A^e g_V^{\rm target} + D_{\rm b}(\theta) g_V^e g_A^{\rm target} \right] \\ g_A &= T_3 \qquad g_V = T_3 - 2Q \sin^2\theta_{\rm W} \\ T_3 &\sim \begin{pmatrix} \nu_I \\ I^- \end{pmatrix}_I, \begin{pmatrix} u \\ d \end{pmatrix}_I, \dots \end{split}$$

- Second term is typically harder to get to kinematically
 - Requires kinematic separation
 - g_V^e is ~ 0.1 , g_V^q larger
- ullet Axial terms under C effectively $g_A
 ightarrow -g_A$

Neutral Current Structure and Positrons (II)

ullet $e^+(R/L)-e^-(L/R)$ asymmetry offers unique interesting combination

$$\Delta = (\pm g_V^e + g_A^e) G_A^{\text{target}}(x, Q^2) \times \dots$$

- axial-axial coupling unique and not suppressed by $1-4\sin^2\theta_W!$
- Don't actually need spin for separation relative intensity control must be much better than asymmetry
- Axial term of targets is has interesting physics opportunities
 - DIS C_{3q} couplings
 - $q \bar{q}$ pdfs
 - ep Direct access to axial form factor
- Other opportunities
 - Sign flip in EM higher order effects
 - s-channel studies

Parity Violation at JLab

- Parity experiments are high current going to assume 6 μA
- Requires exquisite control of systematics
 - Rapid flipping of states!
 - Beam properties at injector
 - High precision polarimetry
 - Control and measurement of beam intensity, energy, position
- Largely going to ignore these issues

PVeS Experiment Summary

Elastic ep

$$A = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}} \right] \left[\frac{\epsilon G_E^{\gamma} G_E^{\zeta} + \tau G_M^{\gamma} G_M^{\zeta} + 2g_V^e \epsilon' G_M^{\gamma} G_A^{\zeta}}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2} \right]$$

$$\epsilon = \left[1 + 2(1+\tau) \tan^2 \frac{\theta}{2} \right]^{-1}; \ \epsilon' = \sqrt{\tau (1+\tau)(1-\epsilon^2)}; \ \tau = Q^2/4M^2$$

$$G_E^{pZ} = (1 - 4\sin^2 \theta_W) G_E^{p\gamma} - G_E^{n\gamma} - G_E^{s\gamma}$$

- G0 covered Q² 0.1-1 GeV² at various
- \bullet Two backwards angle runs on LH_2 and QE LD_2
- Extracted G_A with considerable uncertainty
 Axial ~ 20% contribution to proton asymmetry

Axial FF

- Axial form factor measured in β decay only isovector component with $n \to p$ by SU(3)
- Related to spin structure and DIS

$$\Gamma_1^p = \frac{1}{2} \int_0^1 \sum e_i^2 \Delta q_i(x) dx \sim \frac{1}{12} g_A^{(3)} + \frac{1}{36} g_A^{(8)} + \frac{1}{9} g_A^{(0)} + \dots$$

• Proton neutral current G_A includes isoscalar components (i.e. strange quarks and also radiative components)

$$G_A^p(Q^2 = 0) = g_A^{(3)} \left(1 + R_A^{T=1} \right) + \frac{3F - D}{2} R_A^{T=0} + \Delta s \left(1 + R_A^{(0)} \right)$$

$$\Delta s = g_A^{(8)} - g_A^{(0)}$$

Radiative Corrections

 Radiative corrections to Axial FF not well known, difficult to calculate (Zhu et al, PRD 62 (2000) 033008)

$$R_A^{T=1}$$
 $R_A^{T=0}$ R_A^0 $-0.258(0.34)$ $-0.239(0.2)$ -0.551

- Typically only small suppressed component in forward experiments
- In positron measurement targeting axial FF, on the order 10%

$$A^{e^{+}-e^{-}} = \frac{G_F Q^2}{2\pi\alpha\sqrt{2}} g_A^e \frac{G_A^Z G_M^{\gamma}}{\epsilon \left(G_E^{\gamma}\right)^2 + \tau \left(G_M^{\gamma}\right)^2}$$

- ullet Totally overwhelmed by $\gamma\gamma$ terms
- 6 μA , trying to get 10% measurement of G_A^Z , similar G0 kinematic run time ignoring $2\gamma...$
- $A_{\rm PV}$ radiative corrections (e.g. $\gamma-Z$ box diagrams) V and A corrections have positron sign flip in each single measurement not enough to constrain (Afanasev, Carlson PRL 94 212301 (2005))

Radiative Corrections

- Exception for spinless targets → no axial current
- Sensitive to box of extra photon

Afanasev, Carlson PRL 94 212301 (2005)

PVDIS - Deep Inelastic Scattering

- PVDIS gives access to underlying partonic structure
- ullet Rate at high $Q^2
 ightarrow {
 m relatively}$ larger statistics and asymmetry
- $A_e V_q$ (C_{1q}) and $V_e A_q$ (C_{2q}) effective couplings
- Excellent combination to test new physics and QCD nucleon/nuclear structure!

$$A_{\rm PV} pprox -rac{G_F Q^2}{4\sqrt{2}\pilpha} \left[rac{{\sf a_1(x)}}{1+(1-y)^2}rac{{\sf a_3(x)}}{1+(1-y)^2}
ight], y=1-rac{E'}{E}$$

$$\frac{a_1(x)}{\sum e_q^2(q+\bar{q})}, \frac{a_3(x)}{\sum e_q^2(q+\bar{q})} = 2 \frac{\sum C_{2q}e_q(q-\bar{q})}{\sum e_q^2(q+\bar{q})}$$

$$\begin{array}{ll} \textbf{C}_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W = -0.19 & \textbf{C}_{2u} = -\frac{1}{2} + 2\sin^2\theta_W = -0.03 \\ \textbf{C}_{1d} = \frac{1}{2} - \frac{2}{3}\sin^2\theta_W = 0.34 & \textbf{C}_{2d} = \frac{1}{2} - 2\sin^2\theta_W = 0.03 \end{array}$$

SoLID - Next Generation 12 GeV PVDIS

- New large installation project, over 250 international collaborators!
- ullet Broad experimental including PVDIS, SIDIS, J/ψ , and more!
- $Q^2 \sim 2 8 \text{ GeV}^2$, x = 0.2 1, $dA_{\rm PV}/A < 1\%$
- Based around CLEO2 magnet now at JLab

SoLID - PVDIS SM and Nucleon Properties

- ullet 60 μA on 40 cm LH₂ or LD₂ target
- Errors for 120 days 11 GeV LD₂ give sub 1% in many bins
- Constraints on $\Lambda \sim 10\text{-}20 \text{ TeV}$

SoLID - C_{3q}

Axial-Axial in DIS has effective couplings $C_{3q}=\pm rac{1}{2}$

$$A^{e^+(R/L)-e^-(L/R)} = \frac{G_F Q^2}{4\sqrt{2}\alpha\pi} \frac{1-(1-y)^2}{1+(1-y)^2} \frac{\sum (C_{2q} \pm C_{3q}) e_q(q-\bar{q})}{\sum e_q^2(q+\bar{q})}$$

- ullet Only measured once at CERN with μ^+ and μ^- on C to $\sim\!25\%$ level
- To get few % measurement of $2C_{3u} C_{3d}$ on LD₂, 30 days 6 μA with SoLID
- Asymmetries on the order of 100 s ppm beam quality systematics are less stringent

EIC - Additional sea quark information

Zhao, Deshpande, Huang, Kumar, SPR EPJ A (2017) 53: 55

- F_3 is $q \bar{q}$ PDFs \rightarrow valence/sea quark info
- Also has analogous polarized nucleus version
- Complementary to charge current processes which is flavor changing
- Also previous studied at HERA

EIC - Additional sea quark information

Zhao, Deshpande, Huang, Kumar, SPR EPJ A (2017) 53: 55

- F_3 is $q \bar{q}$ PDFs \rightarrow valence/sea quark info
- Also has analogous polarized nucleus version
- Complementary to charge current processes which is flavor changing
- Also previous studied at HERA

MOLLER → BHABHA?

- ullet sin $^2 heta_{
 m W}$ to new world leading precision
- ullet 11 GeV beam on 150 cm LH $_2$ target with accepted heta=6-17 mrad
- $A_{\rm PV} = 35 \; ppb \; {\rm to} \; 2.1\%$

$$A_{\mathrm{ee}} = m_{\mathrm{e}} E rac{G_F}{\sqrt{2}\pilpha} rac{4\sin^2 heta_{\mathrm{CoM}}}{(3+\cos^2 heta_{\mathrm{CoM}})^2} \left(1-4\sin^2 heta_W
ight)$$

• Symmetric in electrons - already have access to product $g_A^e g_V^e$ so probably not a lot interesting

$|e^+e^- ightarrow f \overline{f}$?

Other couplings to fermions not as well measured!

- Interesting for proton radius puzzle? (maybe in loops?)
- Need $4m_{\mu}^2 < s = 2m_e E \sim 43$ GeV e^+ to do this on fixed target...
- ullet Statistics for colliders off Z resonance too challenging

$e^+e^- ightarrow f \bar{f}$?

Other couplings to fermions not as well measured!

- Interesting for proton radius puzzle? (maybe in loops?)
- Need $4m_{\mu}^2 < s = 2m_e E \sim$ 43 GeV e^+ to do this on fixed target...
- ullet Statistics for colliders off Z resonance too challenging

PREX and CREX - Nuclear Neutron Skin Measurements

- Z primarily couples to neutron distributions - otherwise elastic FF measurement
- Neutron skin $\equiv \sqrt{\langle R_n^2 \rangle} \sqrt{\langle R_p^2 \rangle}$
- ullet PREX-I completed in 2010 (1.1 GeV, 5°)
- Confirmed existence of ²⁰⁸Pb skin at 95% CL measuring 0.7 ppm asymmetry

S. Abrahamyan et al. Phys. Rev. Lett. 108, 112502 (2012) 213 citations!

Seamus Riordan (ANL) Neutral Currents Sept 14, 2017 17 / 20

positron PREX

- Coulomb corrections critical!
- electron minima show up at smaller q than positron
- Effect is very small!

Breton et al, PRL 66 (1991) 572

positron PREX

- Coulomb corrections critical!
- electron minima show up at smaller q than positron
- Effect is very small!

Special thanks to C. Horowitz

Not Neutral Current...

- \bullet Transverse spin asymmetry has small $\sim 10^{-5}$ asymmetries
- Only 2γ contributions by T

- Lead surprisingly small
- Calculations are dispersive only Coulomb not included
- ullet Positron would give extra information few days of 6 μA data ?

Summary

- ullet Neutral Currents with e^- and e^+ give access to axial-axial couplings
- Axial properties of targets are often suppressed for JLab kinematics and are more difficult to measure but have interesting unique physics
- Low positron current and worse beam currents make the feasibility of such studies very challenging
- DIS with SoLID could constrain C_{3q} couplings and EIC could offer unique channel for sea quarks

BACKUP

Access to Beyond the Standard Model

- Variety of experiments have unique and complementary sensitivity to new physics and complementary systematics
- Search for differences in $\sin^2 \theta_{\mathrm{W}}$
- Probe new large energy scale Λ through interference contact interactions
- Complementary to searches at high energy colliders

