Testing Lorentz Symmetry with an Electron-Ion Collider

Nathan Sherrill

Indiana University (IU)
Indiana University Center for Spacetime Symmetries (IUCSS)
Joint Physics Analysis Center (JPAC)

nlsherri@indiana.edu

JPos17: September 14th, 2017

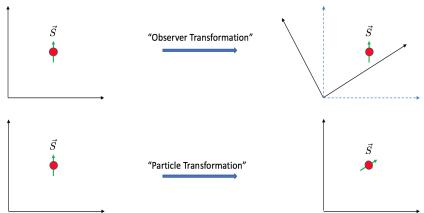
In collaboration with Enrico Lunghi (IU)

Outline

- Introduction and motivation
 - Some basic notions of Lorentz violation
 - The Standard-Model Extension (SME)
- Quark-sector application: Deep-inelastic e-p scattering (DIS)
 - Setup
 - Cross-section
 - Sun-centered frame and rotations
- 3 Previous studies and impact of an EIC
 - HERA analysis
 - Prospects at the EIC and (preliminary!) results
 - Wrap-up

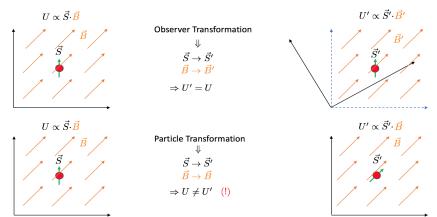
Basic ideas

• Consider the following:



- An observer transformation is simply a change of coordinates
- The system is unchanged under the particle transformation we say the system possesses *rotation symmetry*

• Let's now add a background \vec{B} -field that permeates all of space:



- Performing a particle transformation now produces a physical effect
- This is what we mean by rotation violation
- The same ideas apply to *Lorentz violation* (rotations are a type of Lorentz transformation)

The Standard-Model Extension (SME)

 The most general effective field theory characterizing Lorentz and CPT violation is the framework known as the SME^{1,2}

$$\mathcal{L}_{\textit{SME}} = \mathcal{L}_{\textit{Gravity}} + \mathcal{L}_{\textit{SM}} + \mathcal{L}_{\textit{LV}}$$

ullet The terms \mathcal{L}_{LV} contain all possible terms that break Lorentz symmetry

For example:
$$\mathcal{L}_{\mathbf{LV}}^{QED} \supset a_{\mu} \bar{\psi} \gamma^{\mu} \psi$$
, $c_{\mu\nu} \bar{\psi} \gamma^{\mu} \overleftrightarrow{D}^{\nu} \psi$

- Important point: coefficients $a_{\mu}, c_{\mu\nu}$, etc. transform as 4-vectors/tensors under observer transformations but as scalars under particle transformations
- Some terms in the SME also violate CPT symmetry
- Since CPT violation implies Lorentz violation³ the SME generally characterizes this effect as well

¹D. Colladay & V. A. Kostelecký, PRD 55, 6760 (1997); PRD 58, 1166002 (1998)

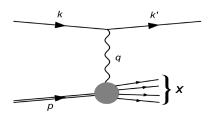
²V. A. Kostelecký, PRD 69, 105009 (2004)

³O.W. Greenberg, PRL 89, 231602 (2002)

Outline

- Introduction and motivation
 - Some basic notions of Lorentz violation
 - The Standard-Model Extension (SME)
- Quark-sector application: Deep-inelastic e-p scattering (DIS)
 - Setup
 - Cross-section
 - Sun-centered frame and rotations.
- 3 Previous studies and impact of an EIC
 - HERA analysis
 - Prospects at the EIC and (preliminary!) results
 - Wrap-up

Setup



- At zeroth order in the strong interaction quarks dominantly interact electromagnetically with the electron
- There are many possible terms to consider but we focus solely on one class of spin-independent CPT-even contributions:⁴

$$\mathcal{L} = \sum_{f=u,d} (g^{\mu\nu} + c_f^{\mu\nu}) \bar{\psi}_f \left(\frac{1}{2} i \gamma_\mu \overleftrightarrow{\partial}_\nu - q_f \gamma_\mu A_\nu \right) \psi_f$$

• Equivalent to $\gamma_{\mu} \to \gamma_{\mu} + c_{\mu\nu}\gamma^{\nu}$ for f=u,d only (dominant proton flavor content)

⁴V. A. Kostelecký, E. Lunghi, A. Vieira, PLB 729, 272-280, 2017

- ullet The observable of interest is the differential cross-section $d\sigma$
- Schematically:

$$d\sigma \sim \frac{|\mathcal{M}|^2}{F}dQ$$

ullet Effects of LV are considered on the amplitude ${\cal M}$

$$\begin{split} i\mathcal{M} &= (-ie)\bar{u}(k')\gamma_{\mu}u(k)\frac{-i}{q^2}(ie)\int \mathrm{d}^4x e^{iq\cdot x} \left\langle X \right| J^{\mu}(x) \left| P \right\rangle \\ J^{\mu}(x) &= q_f \bar{\psi}_f(x)\Gamma^{\mu}_f \psi_f(x) \\ \Gamma^{\mu}_f &= \gamma^{\mu} + c_f^{\mu\nu}\gamma_{\nu} \end{split}$$

• Using the optical theorem the hadronic vertex is related to the forward Compton-amplitude $W^{\mu\nu}$ which we evaluate using the parton model

$$W^{\mu\nu} \simeq i \int \mathrm{d}^4 x \mathrm{e}^{iq\cdot x} \int_0^1 d\xi \sum_{f=u,d} \frac{f_f(\xi)}{\xi} \left\langle \xi P | T\{J^{\mu}(x)J^{\nu}(0)\} | \xi P \right\rangle$$

The spin-averaged differential cross-section is

$$\frac{\mathsf{d}^3\sigma}{\mathsf{d}x\mathsf{d}y\mathsf{d}\phi} = \frac{\alpha^2y}{2\pi q^4} L^{\mu\nu} \mathsf{Im}[W_{\mu\nu}]$$

- In the presence of LV there is a non-trivial dependence on the azimuthal (final state electron) scattering angle ϕ
- Averaging over ϕ enables us to split up the cross-section

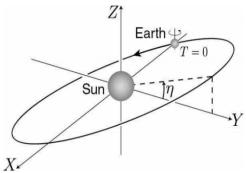
$$\left. \frac{\mathrm{d}^2 \sigma}{\mathrm{d} x \mathrm{d} y} \right|_{\mathit{SME}} = \left. \frac{\mathrm{d}^2 \sigma}{\mathrm{d} x \mathrm{d} y} \right|_{\mathit{SM}} + \left. \frac{\mathrm{d}^2 \sigma}{\mathrm{d} x \mathrm{d} y} \right|_{\mathit{LV}}$$

with

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} x \mathrm{d} y} \bigg|_{UV} \propto c_f^{\mu \nu} \beta_{\mu \nu} (p, q, x, y)_f$$

Sun-centered frame and rotations

- The standard choice of frame is the Sun-centered celestial-equatorial frame^{5,6}
- This frame is approximately inertial over the duration of most experiments

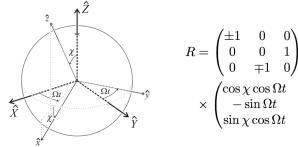


Coefficients for LV are approximately constant in this frame

 $^{^5 \}text{V.A.}$ Kostelecký and M. Mewes, Phys. Rev. D 66, 056005 (2002)

⁶Q. Bailey and V.A. Kostelecký, Phys. Rev. D 74, 045001 (2006)

ullet For laboratory measurements the rotation of the Earth induces a sidereal time-dependence in $d\sigma$



$$R = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & \mp 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\times \begin{pmatrix} \cos \chi \cos \Omega t & \cos \chi \sin \Omega t & -\sin \chi \\ -\sin \Omega t & \cos \Omega t & 0 \\ \sin \chi \cos \Omega t & \sin \chi \sin \Omega t & \cos \chi \end{pmatrix}$$

- To compare with experimental data, we must therefore perform a frame rotation
- Rotated coefficients from Sun-centered frame to lab frame are

$$c_{f,lab}^{\mu\nu} = \begin{cases} c_{f,sun}^{kl} R_{ik} R_{jl}, & \mu, \nu = i, j \in \{1, 2, 3\} \\ c_{f,sun}^{0k} R_{ik}, & \mu, \nu = 0, i \end{cases}$$

Outline

- Introduction and motivation
 - Some basic notions of Lorentz violation
 - The Standard-Model Extension (SME)
- Quark-sector application: Deep-inelastic e-p scattering (DIS)
 - Setup
 - Cross-section
 - Sun-centered frame and rotations
- Previous studies and impact of an EIC
 - HERA analysis
 - Prospects at the EIC and (preliminary!) results
 - Wrap-up

HERA analysis

• The first (estimated) constraints on the sidereal time-dependent coefficients of $c_f^{\mu\nu}$ were recently determined from data taken at HERA8

Coefficient	Individual	Combined
$ c_u^{TX} $	$< 4 \times 10^{-5}$	$< 1 \times 10^{-5}$
$ c_u^{TY} $	$< 4 \times 10^{-5}$	$< 1 \times 10^{-5}$
$ c_u^{XZ} $	$< 4 \times 10^{-5}$	$< 5 \times 10^{-6}$
$ c_u^{YZ} $	$< 4 \times 10^{-5}$	$< 5 \times 10^{-6}$
$ c_u^{XY} $	$<4\times10^{-5}$	$< 3 \times 10^{-6}$
$ c_u^{XX} - c_u^{YY} $	$< 1 \times 10^{-5}$	$<8\times10^{-6}$
$ c_d^{TX} $	$< 3 \times 10^{-4}$	$< 1 \times 10^{-4}$
$ c_d^{TY} $	$< 3 \times 10^{-4}$	$< 1 \times 10^{-4}$
$ c_d^{XZ} $	$< 4 \times 10^{-5}$	$< 2 \times 10^{-5}$
$ c_d^{YZ} $	$< 4 \times 10^{-5}$	$< 2 \times 10^{-5}$
$ c_d^{XY} $	$< 2 \times 10^{-5}$	$< 1 \times 10^{-5}$
$ c_d^{XX} - c_d^{YY} $	$< 5 \times 10^{-5}$	$< 3 \times 10^{-5}$

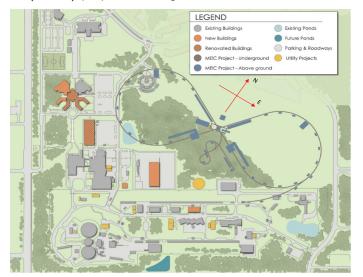
• Time-independent contributions to $d\sigma_{LV}$ were not constrained in this analysis

⁷V. A. Kostelecký, E. Lunghi, A. Vieira, PLB 729, 272-280, 2017

⁸H1 and ZEUS Collaboration, Eur. Phys. J. C (2015) 75:580

Prospects at EIC and (preliminary!) results

• JLab EIC (JLEIC) proposed configuration:



- Simulated reduced cross-section σ_r data of inclusive e-p DIS have been provided for with ranges of x and Q^2 characteristic of the JLEIC design parameters
- The data include values of $x \in \{0.009, 0.9\}$ and $Q^2 \in \{2.5, 631\}$ GeV² along with statistical and systematic errors
- Detector electron beam energy is fixed at $E_e=10$ GeV whereas we have datasets with the proton beam energy set to $E_p=20,60,80,$ and 100 GeV
- The general outline of the extraction of bounds on the coefficients is as follows:
 - -We integrate the LV part of the cross-section into 4 bins of sidereal time
 - -1000 randomized, Gaussian-distributed pseudo-experiments are generated that produce $\sigma_{r,ijk}^{exp.}$ at each (x,Q^2,Δ) value i, pseudo-experiment j, and bin k

 $^{^{9}}$ Data generated by A. Accardi (JLab/Hampton U.) and Y. Furletova (JLab)

- The 95% confidence level constraints on the magnitudes of each sidereal time-dependent coefficient are found by minimizing the χ^2 :

$$\chi^{2}[c_{f}^{\mu\nu}]_{i,j} = \sum_{k=1}^{\text{nbins}} \frac{\left[\sigma_{r,ijk}^{\text{exp.}} - \sigma_{r,ik}^{\text{SME}}(c_{f}^{\mu\nu})\right]^{2}}{\Delta_{i}^{2}}$$

• The JEIC colatitude is $\chi \approx 52.9^\circ$ and there are two detectors with the following directions North of East:

Orientation 1: $\psi \approx 47.6^{\circ}$ Orientation 2: $\psi \approx -35.0^{\circ}$

 Table 1. and Table 2. on the following pages summarize our best estimates

Table 1. Orientation I - Un(correlated) Constraints

			,		
c_u^{TX}		c_u^{TY}		c_u^{XZ}	
$E_p(\text{GeV})$	Constraint $\times 10^5$	$E_p({ m GeV})$	Constraint×10 ⁵	$E_p({ m GeV})$	$Constraint \times 10^5$
20	7.89(3.38)	20	7.91(3.39)	20	13.9(5.95)
60	3.72(1.79)	60	3.73(1.80)	60	6.41(3.08)
80	1.04(0.97)	80	1.06(0.96)	80	1.78(1.65)
100	0.86(0.68)	100	0.85(0.67)	100	1.47(1.16)
	c_u^{YZ}	c_u^{XY}		$ c_u^{XX}-c_u^{YY} $	
$E_p(\text{GeV})$	$Constraint \times 10^5$	$E_p(\text{GeV})$	$Constraint \times 10^5$	$E_p({ m GeV})$	
20	13.9(5.97)	20	50.1(22.5)	20	42.8(19.2)
60	6.43(3.10)	60	23.7(11.5)	60	20.2(9.81)
80	1.81(1.64)	80	6.78(6.13)	80	5.79(5.23)
100	1.45(1.14)	100	5.46(4.26)	100	4.66(3.64)
	c_d^{TX}		c_d^{TY}		c_d^{XZ}
$E_p(\text{GeV})$	Constraint×10 ⁴	$E_p({ m GeV})$	Constraint×10 ⁴	$E_p(\text{GeV})$	Constraint×10 ⁴
20	13.0(5.66)	20	13.1(5.69)	20	22.8(9.96)
60	6.35(3.06)	60	6.45(3.07)	60	10.9(5.27)
80	1.71(1.53)	80	1.75(1.53)	80	2.92(2.61)
100	1.36(1.16)	100	1.37(1.15)	100	2.33(2.00)
	c_d^{YZ} c_d^{XY}		$ c_d^{XX}-c_d^{YY} $		
$E_p(\text{GeV})$	Constraint×10 ⁴	$E_p(\text{GeV})$	Constraint×10 ⁴	$E_p(\text{GeV})$	Constraint×10 ⁴
20	23.0(10.0)	20	86.1(37.1)	20	73.5(31.7)
60	11.1(5.28)	60	41.8(19.4)	60	35.7(16.5)
80	2.99(2.62)	80	10.9(9.91)	80	9.31(8.39)
100			0.07(7.01)	100	7 41(6 16)
100	2.35(1.96)	100	8.67(7.21)	100	7.41(6.16)

Table 2. Orientation II - Un(correlated) Constraints

	c_{ii}^{TX}		c_{u}^{TY}		$c_{::}^{XZ}$
$E_p(\mathrm{GeV})$	Constraint×10 ⁵	$E_p(\text{GeV})$	Constraint×10 ⁵	$E_p(\text{GeV})$	Constraint×10 ⁵
20	7.18(3.04)	$\frac{D_p(GeV)}{20}$	7.02(3.10)	20	16.3(6.90)
60	3.47(1.66)	60	3.45(1.62)	60	7.69(3.67)
80	0.98(0.87)	80	0.96(0.87)	80	2.15(1.92)
100	0.78(0.61)	100	0.76(0.61)	100	1.72(1.35)
			()		
	c_u^{YZ}	c_u^{XY}		$ c_u^{XX} - c_u^{YY} $	
$E_p(\text{GeV})$	Constraint×10 ⁵	$E_p(\text{GeV})$	Constraint×10 ⁵	$E_p(\mathrm{GeV})$	Constraint×10 ⁵
20	15.9(7.03)	20	23.9(10.3)	20	46.5(19.9)
60	7.64(3.60)	60	11.3(5.39)	60	22.0(10.49)
80	2.10(1.91)	80	3.16(2.84)	80	6.12(5.52)
100	1.71(1.35)	100	2.56(2.02)	100	4.98(3.93)
	c_d^{TX}		c_d^{TY}		c_d^{XZ}
$E_p(\text{GeV})$	Constraint×10 ⁴	$E_p({ m GeV})$	Constraint×10 ⁴	$E_p(\text{GeV})$	$Constraint \times 10^4$
20	11.8(5.19)	20	11.9(5.16)	20	26.8(11.8)
60	5.84(2.79)	60	5.90(2.78)	60	12.94(6.17)
80	1.58(1.41)	80	1.58(1.42)	80	3.48(3.10)
100	1.23(1.04)	100	1.23(1.05)	100	2.71(2.29)
	c_d^{YZ}		c_d^{XY}	c	$c_{l}^{XX}-c_{d}^{YY} $
$E_p({ m GeV})$	c_d^{YZ} Constraint×10 ⁴	$E_p({ m GeV})$	c_d^{XY} Constraint×10 ⁴	$ c_{p} $	$ c_{d}^{XX} - c_{d}^{YY} $ Constraint×10 ⁴
$E_p({ m GeV})$	u u	$\frac{E_p(\mathrm{GeV})}{20}$	Constraint×10 ⁴ 39.1(17.2)		Constraint×10 ⁴ 76.0(33.5)
	Constraint×10 ⁴		Constraint×10 ⁴	$E_p({ m GeV})$	Constraint×10 ⁴
20	Constraint $\times 10^4$ 26.9(11.7)	20	Constraint×10 ⁴ 39.1(17.2)	$E_p(\text{GeV})$	Constraint×10 ⁴ 76.0(33.5)

Wrap-up

- We have estimated the constraints obtainable on a particular subset of LV coefficients in the quark-sector of the SME
- This was done by analyzing simulated inclusive DIS data for the proposed JLEIC collider
- Preliminary results suggest similar sensitivities to the estimated bounds obtained by the HERA analysis—but the set of coefficients are unique
- Analysis of RHIC EIC pseudo-data underway
- We look forward to the first real bounds being placed by experiments in the near future!

Backup

• The (γ exchange only) LV cross-section is

$$\frac{d^{3}\sigma}{dxdyd\phi} = \frac{\alpha^{2}}{q^{4}} \sum_{f} q_{f}^{2} f_{f}(x_{f}') x_{f}' \left[\frac{ys^{2}}{\pi} (1 + (1 - y)^{2}) \delta_{f} + \frac{y^{2}s}{x} x_{f} \right]
+ 4 \left(c_{f}^{k'p} + c_{f}^{pk'} \right) + \frac{4}{x} (1 - y) c_{f}^{kk} - 4xy c_{f}^{pp}
- \frac{4}{x} c_{f}^{k'k'} + 4(1 - y) (c_{f}^{kp} + c_{f}^{pk}) \right]$$

$$c_f^{kp} \equiv c_f^{\mu\nu} k_{\mu} p_{\nu}$$
 $x_f' = x - \frac{2}{y_S} \left(c_f^{qq} + x (c_f^{pq} + c_f^{qp}) + x^2 c_f^{pp} \right) \equiv x - x_f$
 $\delta_f = \frac{\pi}{y_S} \left(1 - \frac{2}{y_S} (c_f^{pq} + c_f^{qp} + 2x c_f^{pp}) \right)$