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Parton Distribution Functions

PDFs are important for

• Precision calculations of large momentum transfer hadronic processes

• Understanding the internal structure of hadrons

Hadronic observables may involve single PDFs

σA(x) =
∑

a

∫

dy Ga/A(x/y,Q) σ̂(y)

or

σAB(x) =
∑

a,b

∫

dy

∫

dz Ga/A(y,Q)Gb/B(z,Q)σ̂(y, z)δ(x− yz)

Challenge is to obtain data for appropriate observables in order to

constrain the PDFs over as large a kinematic region as possible.
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State of the art for Global Fits of PDFs

Most analyses have many features in common

• DGLAP Evolution

• LO, NLO, and/or (partial) NNLO

• Dependence on αS

• Target Mass Corrections and Dynamical Higher Twist, as needed

• Nuclear corrections, as needed
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However, there are some areas of difference

• Treatment of flavors (fixed vs. variable schemes)

• Heavy quark treatments

• Parametrization dependence

• Treatment of PDF errors

• Choice of data sets

• Choice of kinematic cuts

• Inclusion of nuclear corrections and the method used

These differences lead to variations in the resulting PDFs and their

estimated errors. I will touch on a number of these in the following.
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What are some issues of current interest in PDFs?

In a phrase - flavor separation

1. d/u behavior at large values of x

2. Determination of the s± s̄ PDFs

3. Constraints on the gluon PDF
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To start with, here is a typical set of PDFs (CJ15 in this case)

• It looks as if the PDFs are well determined, but a linear scale can hide

important details.

• Look instead at ratios
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See significant uncertainties in all of the PDFs,

=⇒ especially the d PDF at large values of x
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Exploration of the large-x region

• If one wants to explore the large-x region, then cuts on Q2 and W 2

must be lowered from conventional values since

W 2 = m2 +Q2(
1

x
− 1)

• Lower the Q2 cut to get access to more data from lower energy

experiments

• Must also then lower the W 2 cut in order to get to high x values
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• Requires including power-suppressed terms and nuclear corrections

• Red symbols are existing JLab data

(more available - database in preparation with Shujie Li)

• For the 12 GeV program the max Q2 value will nearly double

(pink is E12-10-002 – see also marathon and bonus12)

• Lowest curve shows the limit for Q2 > (1.3 GeV)2 and W 2 > 3 GeV2

• Kinematic coverage will get close to x ≃ 0.85
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Nuclear Corrections

Several approaches

• Explicit calculation of deuterium Fermi motion smearing using existing

nucleon wavefunctions as well as models for off-shell corrections and

screening (e.g., CJ)

• Use of models such as that of Kulagin and Petti, especially for heavier

nuclei such as Fe (e.g., ABM)

• Parametrize deuteron corrections without an explicit model (e.g.,

MSTW)

• For the deuterium case the two different methods (explicit model vs.

parametrization) yield compatible results
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So why does the error on the d PDF grow so large as x → 1?

Lowest order ep neutral current DIS at large values of x - use as a guide

F ep
2 =

x

9
(4u+ d) F en

2 =
x

9
(4d+ u)

• At large values of x, the d PDF falls faster than the u PDF

• F ep
2 dominated by the u PDF and the errors on u are relatively small

• F en
2 dominated by the d PDF - If you had data for F en

2 , then you could

separate the d and u PDFs at large values of x

• Extract F en
2 from data taken on deuterium at large values of x
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• The large-x region is where the nuclear corrections become large due to

Fermi motion corrections

• The ratio of F d
2 to the isoscalar structure function FN

2 exceeds 10%

once you go past x ≃ 0.75

• Note that the dependence on the wavefunction used is relatively small

compared to the overall error band for this ratio of structure functions

• The d PDF changes to compensate for different nuclear smearing so the

resulting error band on the d PDF itself grows in the region where the

smearing gets large
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Can see this by looking at the dependence of the PDF on the wavefunction

used

d PDF shows the most dependence on the choice of the deuteron

wavefunction
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d/u ratio shows significant variations between various PDF sets

• Some is due to parametrization bias

• Some is due to Q and W cuts that effectively limit x to x ∼ 0.7 so the

large x region is an extrapolation

• Some is due to different treatments of nuclear corrections

15



Need a way to constrain the d PDF in the absence of nuclear corrections

Classic solution is to use neutrino DIS. Again, at lowest order at large

values of x

F νp
2 = 2x(d+ s+ ū+ d̄) −−−→

x→1
2xd

and

F ν̄p
2 = 2x(u+ c+ d̄+ s̄) −−−→

x→1
2xu

so that at large values of x

F νp
2 /F ν̄p

2 = d/u
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However

• Data on proton targets from early bubble chamber experiments had

low statistics and provided little constraint on d/u at large values of x

• High statistics experiments used nuclear targets

– Results give information on nuclear PDFs

– Need to account for nuclear model dependent corrections to extract

d/u for the proton

– Highly unlikely to get data from a hydrogen target using modern

high intensity neutrino beams due to safety concerns
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One solution is to use the charged current interaction in the form of W

production from the Tevatron

The charged W asymmetry

A(y) =
σ(W+)− σ(W−)

σ(W+) + σ(W−)
≈

1− d/u(x1)

1 + d/u(x1)
with x1 ≈

MW
√

(s)
eηW

at large W rapidity is sensitive to the d/u ratio
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• Can see the effect of adding various data sets to a series of fits

• Can see the decrease in the d/u error bands

• No nuclear corrections needed

• Can help select amongst the various treatments of nuclear corrections
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• W asymmetry has more constraining power than the W -lepton

asymmetry

• Leptonic V −A decay limits the reach in rapidity ⇒ less constraint on

the d PDF

• On the other hand, the W asymmetry extraction is model dependent
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Another solution - use the line-reversed DIS processes, again for large x

e+p → ν̄ +X F e+p,cc
2 (x,Q) ∝ xd

and

e−p → ν +X F e−p,cc
2 (x,Q) ∝ xu

• Allows direct extraction of d/u at large values of x

• These processes have been measured at HERA out to x ≃ 0.4

• Need good statistics at larger x values if one wants to extract d/u

directly
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Progress on antiquark PDFs

• g → qq̄ vertex is flavor independent so one might expect all antiquark

PDFs to be the same

• This ignores various nonperturbative effects

• d̄ 6= ū based on meson cloud model

p → π+n versus p → π−∆++

uud → (ud̄)(ddu) uud → (dū)(uuu)

• Latter is suppressed relative to the former so one might expect d̄ > ū

• Confirmed by Gottfried Sum Rule

∫ 1

0

dx

x
(F p

2 (x)− Fn
2 (x)) ≈

1

3
−

2

3

∫ 1

0

dx(d̄(x)− ū(x)) = 0.234± 0.026

22



Lepton Pair Production

A B

l-

l+

X

l+ l-

• pp → µ+µ− +X driven by the subprocess q̄q → µ+µ−

• Yields information on the antiquarks at small values of x and the

valence quarks at large values of x

• E866 at Fermilab measured this process with both proton and deuteron

targets

• σpd

2σpp ≈ 1

2
(1 + d̄

ū )

• Results showed d̄ > ū over much of the measured range in x
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• Data indicate that d̄ > ū for most of the x range

• Last few points suggest that d̄ < ū for x > 0.2

• Hard to accommodate in any physical picture of the nonperturbative

inputs
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• New experiment E-906 (SeaQuest) at Fermilab will have improved

statistics and kinematic coverage

• Preliminary data suggests d̄ > ū out to at least x ≈ 0.5

• Additional data being taken, acceptance and efficiency corrections

being finalized.
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Again, consider the charged current structure functions in lowest order

F e+p,cc
2 (x,Q) = 2x(d+ s+ ū+ c̄)

and

F e−p,cc
2 (x,Q) = 2x(u+ c+ d̄+ s̄)

• If xF e−p,cc
3 = 2(u− d̄− s̄+ c) and xF e+p,cc

3 = 2(d− ū− c̄+ s)

can be extracted, one can separate the quark and antiquark PDFs

• If the charm PDF is perturbative, i.e. there is no intrinsic charm, then

c = c̄

• Can get information on d̄/ū
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Strange antiquarks

• Best constraint has come from neutrino production of muon pairs

νµs → µ−c followed by c → sµ+νµ

• Opposite sign dimuon cross section sensitive to the s PDF.

• Using a ν̄µ beam gives sensitivity to the s̄ PDF

• CCFR and NuTeV results suggest

κ =
s+ s̄

ū+ d̄
≈ 0.4
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• But some collider results for W±, Z production suggest a ratio closer to

one (ATLAS Collaboration, M. Aaboud et al., arXiv:1612.03016)

• Alekhin, Blümlein, and Moch (arXiv:1708.01067) attribute at least

some of the difference to a less flexible paramtrization in the ATLAS

analysis
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Would a meson cloud approach say something about this?

p → K+Λ

uud → (us̄)(sud)

• Intermediate state is heavier that π+n or π−∆++

• Suggests a nonperturbative ss̄ contribution that is suppressed relative

to the d̄ and ū PDFs
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Caveats

• Neutrino measurements are on iron targets so one is really sensitive to

iron PDFs, not those of the free proton

• There are uncalculated (and unknown) nuclear corrections for the

propagation of the produced charm meson through the nucleus

• One could also have induced energy loss in the final state

• Would like a process free of nuclear corrections/effects
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Measure charged current cross sections with a muon tag to select charm

final states

e+s → ν̄c followed by c → sµ+νµ

and

e−s̄ → νc̄ followed by c̄ → s̄µ−ν̄µ

• Note that the sign of the muon is the same as the sign of initial state

lepton

• Potentially capable of separating s from s̄
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Conclusions

Charged current measurements in e±p DIS are potentially capable of

improving our knowledge of PDFs by providing:

• Better constraints on d/u in the large x region

• Additional constraints on d̄/ū to complement information from lepton

pair production

• Constraints on s+s̄
ū+d̄

without the need for nuclear corrections

Studies at EIC kinematics are under way to quantify this potential

[Accardi, Ent, Furletova, Keppel, Park, Yoshida – EICUG Trieste, Jul’17]

• Help is welcome

• What’s possible at JLab12?
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