Precise extraction of elastic scattering for two-photon exchange measurements

UVA: M. Yurov UVA: D. Day ANL: J. Arrington NU: M. Johnson Rosen07/E05-017 collaboration, Hall C JLab

JPos17 workshop 09/17, Newport News, VA

OUTLINE

1 Two photon exchange

Super Rosenbluth: E05-017

2

Super Rosenbluth with positrons

TPE TESTS

O deviation from linearity in Rosenbluth plot: $\sigma_R = \tau G_M^2(Q^2) + \varepsilon G_E^2(Q^2)$ O comparison of LT and PT

TPE TESTS

Unpolarized scattering with $\,e^-\,$

E05-017

O deviation from linearity in Rosenbluth plot: $\sigma_R = \tau G_M^2(Q^2) + \varepsilon G_E^2(Q^2)$ O comparison of LT and PT

TPE in ROSENBLUTH TESTS

Unpolarized scattering

deviation from linearity in Rosenbluth plot

figure of merit to test linearity

previous measurements - P_2 is consistent with 0

TPE in ROSENBLUTH TESTS

Unpolarized scattering

probe TPE by measuring discrepancy between Rosenbluth and PT

• TPE effects is ~50% of ε dependence at $Q^2 = 2.64$

• $Q^2 > 4 \quad \varepsilon$ dependence is almost entirely TPE

TPE in ROSENBLUTH TESTS

Unpolarized scattering

deviation from linearity in Rosenbluth plot

figure of merit to test linearity:

- previous measurements P_2 is consistent with 0
- $lacksymbol{ar{e}}$ maximize range and # of arepsilon measurements at selected Q^2

probe TPE by measuring discrepancy between Rosenbluth and PT

- TPE effects is ~50% of ε dependence at $Q^2 = 2.64$
- $Q^2 > 4 \ \varepsilon$ dependence is almost entirely TPE
- lacksim improve Rosenbluth precision, particularly at larger Q^2

DETECT PROTON instead of ELECTRON

Improve Rosenbluth precision by minimizing \mathcal{E} - dependent corrections

- much weaker variation of σ_{ep}
 - less sensitive to offsets
 - access smaller θ'_{elec}

- $P'_{prot} = const$ at fixed Q^2
- smaller rad. corrections
- JLab Hall A E01-001 run

I. A. Qattan et. al, Phys. Rev. Lett. 94:142301, 2005

DETECT PROTON instead of ELECTRON

Improve Rosenbluth precision by minimizing \mathcal{E} - dependent corrections

- much weaker variation of σ_{ep}
- less sensitive to offsets
- access smaller θ'_{elec}

•
$$P'_{prot} = const$$
 at fixed Q^2

- smaller rad. corrections
- JLab Hall A E01-001 run

DETECT PROTON instead of ELECTRON

Improve Rosenbluth precision by minimizing \mathcal{E} - dependent corrections

- much weaker variation of σ_{ep}
- less sensitive to offsets
- access smaller θ'_{elec}

- $P'_{prot} = const$ at fixed Q^2
- smaller rad. corrections
- JLab Hall A E01-001 run

E05-017 HALL C, JLAB

E05-017 goals

PROTON Rosenbluth to map out $\,arepsilon\,$ and Q^2 dependence of TPE

- $igodoldsymbol{O}$ High precision Rosenbluth extraction of $\mu_p G_E/G_M$ for $0.4 \lesssim Q^2 \lesssim 5.7$
- igcolumbda Tight limits on deviations from linearity in $\,\mathcal{E}\,$ dependence

Difference from E01-001

- \bigcirc Reaches extremes of $\mathcal E$ where TPE is expected to be largest
- \bigcirc Gets higher Q^2 where discrepancy is largest

igodot Maps lower Q^2 to check if discrepancy is present

E05-017 HALL C, JLAB

Kinematical coverage:

- 102 kinematic points
- lacksim 16 values of Q^2
- 17 settings of beam energy
- **2** detailed scans in ε

Linearity extraction:

- quadratic fit to estimate the size of nonlinearity: P_2

- improvements on prior limits at $Q^2 < 2GeV^2$
- nonzero signature is not yet apparent

• Linearity extraction:

- P_2 limits comparable to previous global analysis at $\ 2 < Q^2 < 5 GeV^2$
- single extraction, better low ${\ensuremath{\mathcal E}}$ coverage
- already a better P_2 limits than world data
- expect improvement at high Q^2

- expected uncertainty reduction:
 - point-to-point by factor 1.7 at high Q^2_r small improvement at $Q^2 < 2$

• Rosenbluth separation:

- linear fit to extract FF ratio
- second fit (not shown) with data shifted by $\,\delta_{slope}$ for systematics
- $\Delta \sigma_{2\gamma}$ separates TPE size from G_{E}^{2} slope

- $\mu_p G_E/G_M$ extraction:
 - from analysis that focused on low $\ Q^2$ settings
- expected uncertainty reduction:
 - slope by factor of 2 everywhere
 - point-to-point by factor 1.3 at $\,Q^2 < 2\,$ and by 1.5 above

• performed Rosenbluth FF extraction in $0.4 < Q^2 < 5.7 GeV^2$

- expect further uncertainties reduction for final results
- get better extraction of $\mu_p G_E/G_M$ at low to moderate Q^2 and match existing data at larger Q^2
- P_2 analysis suggested negative curvature
 - consistent with calculations of Blunden and Chen
 - set better limits than global analysis with single extraction

Unpolarized scattering

probe TPE by measuring discrepancy between Rosenbluth and PT

- lacksim provides the only meaningful experimental limits above $2GeV^2$
- $lacksymbol{\bullet}$ affected by PT uncertainties, TPE effects, extrapolation to arepsilon=1

Unpolarized scattering

probe TPE by measuring discrepancy between Rosenbluth and PT

- lacksim provides the only meaningful experimental limits above $2GeV^2$
- $lacksymbol{\bullet}$ affected by PT uncertainties, TPE effects, extrapolation to arepsilon=1

Unpolarized scattering with positron beam

deviation from linearity in Rosenbluth plot

- the opposite sign of curvature parameter P_2
- factor of 2 improvement
- need to cover similar ε range and many ε points

switching from $LT(e^{-})$ - $PT(e^{-})$ to $LT(e^{-})$ - $LT(e^{+})$ comparisons

- eliminates dependence on PT uncertainty and TPE corrections
- doubles sensitivity
- need statistical uncertainty under ~1%
- lacksquare useful range of Q^2
- positron beam of appropriate energy and intensity

E05-017 configuration:

- 3 settings of beam current
- 4 cm LH2 and dummy targets
- acceptance: 3.2 msr

E05-017 beam time: ~340hrs (production)

	$Q^2[GeV^2]$	Nε	$T_{\varepsilon}[hrs]$	T[hrs]	Δ_{stat} [%]
	0.40	4	0.5	2.0	0.10
$I_{beam} = 30 \mu A$	0.50	7	1.0	7.0	0.10
	0.60	7	1.5	10.5	0.10
	0.70	6	2.0	12.0	0.10
	0.80	8	2.5	20.0	0.10
	0.98	13	2.5	32.5	0.10
	1.19	6	3.0	18.0	0.10
T F A	1.34	7	3.0	21.0	0.10
$I_{beam} = 50 \mu A$	1.70	3	4.0	12.0	0.20
	1.91	6	4.0	24.0	0.20
	2.29	10	4.5	45.0	0.20
	2.95	6	4.5	27.0	0.20
$I_{beam} = 80 \mu A$	3.61	6	5.0	30.0	0.20
	4.25	6	5.0	30.0	0.30
	5.08	3	7.0	21.0	0.40
	5.76	4	7.0	28.0	0.40

E05-017 configuration:

- 3 settings of beam current
- 4 cm LH2 and dummy targets
- acceptance: 3.2 msr

E05-017 beam time: ~340hrs (production)

$5\mu A$ $1\mu A$ of positron beam

	$Q^2[GeV^2]$	Nε	$T_{\varepsilon}[hrs]$	T[hrs]	Δ _{stat} [%]	∆ _{stat} [%]	Δ _{stat} [%]
$I_{beam} = 30 \mu A$	0.40	4	0.5	2.0	0.10	0.24	0.55
	0.50	7	1.0	7.0	0.10	0.24	0.55
	0.60	7	1.5	10.5	0.10	0.24	0.55
	0.70	6	2.0	12.0	0.10	0.24	0.55
	0.80	8	2.5	20.0	0.10	0.24	0.55
	0.98	13	2.5	32.5	0.10	0.24	0.55
$I_{beam} = 50 \mu A$	1.19	6	3.0	18.0	0.10	0.32	0.71
	1.34	7	3.0	21.0	0.10	0.32	0.71
	1.70	3	4.0	12.0	0.20	0.63	1.41
	1.91	6	4.0	24.0	0.20	0.63	1.41
	2.29	10	4.5	45.0	0.20	0.63	1.41
$I_{beam} = 80 \mu A$	2.95	6	4.5	27.0	0.20	0.80	1.79
	3.61	6	5.0	30.0	0.20	0.80	1.79
	4.25	6	5.0	30.0	0.30	1.20	2.68
	5.08	3	7.0	21.0	0.40	1.60	3.58
	5.76	4	7.0	28.0	0.40	1.60	3.58

Optimize for positron intensity: $5\mu A$

- reduce kinematic coverage
- keep Δ_{stat} in 0.5-0.8% range
- 4 cm target
- acceptance: 3.2 msr

Beam time:

~348hrs (production)

 $5\mu A$ $1\mu A$

Optimize for positron intensity: $1\mu A$

- reduce kinematic coverage
- keep Δ_{stat} in 0.5-0.8% range
- 4 cm target
- acceptance: 3.2 msr

Beam time:

~431hrs (production)

 $1\mu A$

Optimize for positron intensity: $1\mu A$

- e restrict kinematics to low \mathcal{E}
- keep Δ_{stat} in 0.5-0.8% range
- 10 cm target
- acceptance: 3.2 msr

Beam time:

~380hrs (production)

$Q^2[GeV^2]$	Nε	$T_{\varepsilon}[hrs]$	T[hrs]	∆ _{stat} [%]
0.40	3	1.0	3.0	0.39
0.70	5	2.0	10.0	0.55
0.98	5	3.0	15.0	0.50
1.34	5	6.0	30.0	0.50
1.70	4	18.0	72.0	0.67
2.95	4	25.0	100.0	0.76
3.61	3	20.0	60.0	0.57
4.25	3	30.0	90.0	0.69

 $1\mu A$

CONCLUSIONS

- comparison of e^+/e^- Rosenbluths combined with proton detection
 - doubles sensitivity
 - avoids model-dependent uncertainties
- prospects with 1uA positron beam
 - good coverage up to 4GeV² and statistical uncertainty under 1% in 18 days with HMS alone
 - further improvements with longer targets and SHMS

THANK YOU