Development and Application of Spin-Polarized Positron Beam with Radioisotopes

e+ group

A. Kawasuso, M. Maekawa, K. Wada, A. Miyashita

National Institutes for Quantum and Radiological Science and Technology

Spin current group T. Seki, E. Saitoh, K. Takanashi

Tohoku University

Ps-TOF group S. lida, Y. Nagashima Science University of Tokyo

High Energy Acceleration Research Organization

GaGdN group A. Yabuuchi **Kyoto University**

MgZnO/ZnO group

Y. Kozuka, D. Maryenko, M. Kawasaki

Tokyo University

Financial support : JSPS KAKENHI under Grant No. 24310072,15K14135,17K19061.

Contents:

1. About Polarized Positron Spectroscopy

- ✓ General aspects
- ✓ Beam development

2. Applications of Polarized Positron Spectroscopy

- Classical to Heusler ferromagnets
- ✓ Vacancy-induced ferromagnetism
- ✓ Surface spin-polarization
- 3. Summary & Outlook

Με	ethod	Intensity/Pol.	Facility
Ion accelerato	r/Reactor	10³-10 ⁶ e⁺/sec 30-50%	Possible anywhere with radioisotopes
Synchrotron or Linac	Pair- creation Inverse Compton →Polarized gamma Polarized laser	10 ⁵ -10 ⁷ e ⁺ /sec ~50%	KEK ELI-NP (Extreme Light Infrastructure)
Electron lina	Pair-creation	10 ⁵ -10 ⁷ e ⁺ /sec ↑ ~50%	Jefferson Lab
Polarized electr	ron \rightarrow Polarized gamma	0.1~1mA	
	¹¹³ Cd(n, γ) ¹¹⁴ Cd Pair-creation	Electron Linac	Pair- creation 10 ⁷ -10 ⁹ e ⁺ /sec
Reactor 10'-10⁹e⁺/sec TUMunic, Delft Univ. North Carolina, McMaster Univ.		KEK, AIST Rossendorf, Sacla	ay, BeijingIHEP
κγοτό υπιν	Unpola	arized Ly Polar	izer needed

Higher *e*⁺ polarization gives better results

Expected Beam Polarization (continued) Depolarization due to back-reflected positrons

 $R = 0.342 \log Z - 0.146$ Phys. Rev. A7(1973)135.

Positrons with all possible θ and E are back-reflected with this probability $\Box \Delta P_+ = 1 - R \sim 90\%$ for Carbon substrate

Depolarization due to spin flip in moderator

Longitudinal spin polarization: *e*⁺ Spin</sup> Flight Non-moderated positron beam (⁶⁸Ge-⁶⁸Ga)

Transverse spin polarization: e^{+} $\xrightarrow{\text{Spin}}$ Flight Electrostatic positron beam #1 (²²Na, ⁶⁸Ge-⁶⁸Ga)

Contents:

1. Introduction to Positron Spectroscopy

✓ General aspects

✓ Spin-Polarized Positron Spectroscopy

2. Applications of Polarized Positron Spectroscopy

- Classical to Heusler ferromagnets
- ✓ Vacancy-induced ferromagnetism
- ✓ Surface spin polarization
- 3. Summary & Future Prospects
 - ✓ Further Research & Development

Spin-polarized positron spectroscopy

"Renormalization", ever pursued by Berko and Mills via 3γ observation J. de Phys. 32(1971)C1-287.

Spin-polarized positron spectroscopy

JPCM27(2015)246001. Defect and Diffusion Forum, 373(2017)65-70.

	λ^{\uparrow}	λ^{\ddagger}
Fe	9.35	8.47
	10.6	10.1
Со	8.91	8.48
	10.8	10.2
Ni	9.71	9.62
	10.6	10.4
Gd	6.49	5.29
	7.1	4.8
Co ₂ MnSi	6.80	6.58
	10.5	9.8
Co ₂ MnAl	6.76	6.62
	10.0	9.5
NiMnSb	5.88	5.53
	7.0	6.2

Red: Calculation with BN enhancement factor

Spin-polarized positron spectroscopy

Spin-polarized positron spectroscopy

Agreement in experiment and calculation (ABINIT) Adequate precision of calculation

PRB83(2011)100406(R). PRB85(2012)024417. Defect and Diffusion Forum, 373(2017)65-70.

Contents:

1. Introduction to Positron Spectroscopy

General aspects

✓ Spin-Polarized Positron Spectroscopy

2. Spin-polarized positron spectroscopy, applications

- Classical to Heusler ferromagnets
- ✓ Vacancy-induced ferromagnetism
- ✓ Surface ferromagnetism
- 3. Summary & Future Prospects
 - ✓ Further Research & Development

Magnetic Semiconductor "Semiconductor spintronics"

Carrier-mediated ferromagnetism, controlled by light and electric filed.

- **1990** Synthesis of InMnAs and GaMnAs controlled by light and electric
 - Many studies by doping of magnetic elements
- 2004∼ [[]d⁰] ferromagnetism in Oxide, Nitride, Carbide
 - Vacancies are proposed as the source of ferromagnetism

After Venkatesan et al. Nature430(2004)630.

But, the direct evidences have not yet been found...

Other on-going topics on Vacancy-induced FM

Ga_{0.92}Gd_{0.08}N

Contents:

1. Introduction to Positron Spectroscopy

General aspects

✓ Spin-Polarized Positron Spectroscopy

2. Spin-polarized positron spectroscopy, applications

- Classical to Heusler ferromagnets
- ✓ Vacancy-induced ferromagnetism
- ✓ Surface spin-polarization
- 3. Summary & Future Prospects
 - ✓ Further Research & Development

Surface Spin-Polarization

Surface Spin-Polarization

Gidley et al. PRL49(1982)1779.

FIG. 1. The experimental arrangement. Details of the target chamber are rotated 90° for clarity.

- Ni surface spin polarization was determined to be -2.5%.
- Negative sign = Majority spins are detected.

Surface Spin-Polarization

bcc Fe(001)/MgO(001) fcc-Co(001)/MgO(001), hcp-Co(0001)/Al₂O₃ fcc-Ni(001)/MgO(001), Ni(111) /Al₂O₃ 1.0kV Ar⁺ sputtering + 800°C × 1min. Magnetic field 150~400 Gauss

Fake polarization due to disturbance of beam by switching field direction is removed by rotating sample (explanation skipped)

Fe	Со	Ni
(001) -3.7%	(001) -2.6%	(001) - 0.4%
	(0001) -2.9%	(111) - 1.4%

Defect and Diffusion Forum, 373(2017)65-70.

Majority spins are detected Rather small polarization

Ps may be formed in vacuum region. But, we do not know where of vacuum region.....

In a static theory, Ps is possible only at low density limit, $r_s > 8.5$.

Can. J. Phys. 42(1964)1908.

International Workshop on Physics with Positrons at Jefferson Lab 2017

Experiment is not well-explained if Ps is formed at $r_s > 8.5$

International Workshop on Physics with Positrons at Jefferson Lab 2017

Experiment may be explained if Ps is formed at z ~ 1 Å

International Workshop on Physics with Positrons at Jefferson Lab 2017

Polarization is strongly site dependent Suppressed polarization as observed for Fe may reflect spatial distribution of positron wavefunction

Further studies about Ps formation is required !

Other on-going topics on surface polarization Spin-injection to Graphene-related materials

Rashba systems (2DEG)

Surface Ps Spectroscopy Relationship between DOS and Ps TOF spectrum

Spin-polarized Ps TOF \rightarrow Spin-polarized DOS

$$P(E) = \frac{D^{\uparrow}(E) - D^{\downarrow}(E)}{D^{\uparrow}(E) + D^{\downarrow}(E)}$$

Much detailed surface polarized electronic states!

Summary & Outlook:

- Polarized positron beam
- Ferromagnetic band structure
- Vacancy-induced ferromagnetism
- Surface spin polarization
- To establish this method as a standard tool, further

experimental and theoretical R&Ds are required.

Positron annihilation	SP-Positron annihilation			
Vacancy, Band, Precipitate	Polarized band, Magnetic vacancy & precipitate			
Positronium Time of Flight	SP-Positronium Time of Flight			
Surface electronic state	Surface spin-polarized band			
Positron & Ps Diffraction	SP-Positron & Ps Diffraction			
Surface structure	Surface magnetic structure			
Positron-excited 2nd electron	Positron-excited SP-2nd electron			
Electronic structure	Surface spin-polarization, Magnetic domain			
Positron-induced Auger electron	Positron-induced SP-Auger electron			
Elemental analysis	Elementary spin analysis			
"Intense and Highly Pola	arized Positron Source" will be a great			
contribution to the community.				