Probing Strangeness via Charm Production in CC DIS at HERA

Jae D. Nam

Temple University

Introduction

Charm productions in Charged Current DIS

Quark Initiated Process (QI, LO)

- Via *d/b* is Cabibbo-• suppressed
 - Probes the strangeness in the sea

Boson-Gluon Fusion (BGF, NLO)

- Its contribution becomes • larger at low x
- Background to be • suppressed

Introduction

CC DIS

Neutrino in the final state

- Due to the final state neutrino, a large missing P_T is observed.
- No charged lepton in the final state & the kinematic variables reconstructed using the hadronic final state.
- Kinematic variables (x, y, Q^2) defined by using Jacquet Blondel Method.

$$y_{JB} = \frac{\sum_{h} (E - p_z)_h}{2E_{e,beam}} \qquad Q_{JB}^2 = \frac{p_{T,h}^2}{1 - y_{JB}} \qquad x = \frac{Q^2}{sy}$$

NC DIS

Introduction

Charged current events are always weak interactions.

$$\frac{d\sigma_{CC,P_e}^{e^{\pm}+p}}{dxdQ^2} = (1\pm P_e)\frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{M_W^2+Q^2}\right)^2 \tilde{\sigma}_{CC}^{e^{\pm}+p} \qquad \qquad **G_F = \frac{\pi\alpha}{\sqrt{2}M_W^2 \left(1-\frac{M_W^2}{M_Z^2}\right)}$$

where,

$$\tilde{\sigma}_{cc}^{e^{\pm}+p} = Y_{+}W_{2}^{\pm}(x,Q^{2}) - y^{2}W_{L}^{\pm}(x,Q^{2}) \mp Y_{-}xW_{3}^{\pm}(x,Q^{2})$$
$$W_{2}(x,Q^{2}) = \sum_{i} x(q_{i}(x,Q^{2}) + \bar{q}_{i}(x,Q^{2}))$$
$$xW_{3}(x,Q^{2}) = \sum_{i} x(q_{i}(x,Q^{2}) - \bar{q}_{i}(x,Q^{2}))$$

Jae Nam

 W^+ and W^- (e^+ and e^-) are sensitive to different quark densities,

$$\tilde{\sigma}_{CC}^{e^+ + p} = x[\bar{u} + \bar{c} + (1 - y)^2 (d + s)]$$

$$\tilde{\sigma}_{CC}^{e^- + p} = x[u + c + (1 - y)^2 (\bar{d} + \bar{s})]$$

The resulting charm [anti-charm] from $s(x, Q^2)$ [$\bar{s}(x, Q^2)$] will be tagged by using Secondary Vertexing Method

Secondary Vertex Extraction

Second Vertex Extraction

• True vertices allow reconstruction of the life time, momentum, and energy of the mother particle.

Jae Nam

- Jet axes are used as reference axes.
- Background (LQs) is suppressed by

$$L_{+,xy} - L_{-,xy} \quad (S_{+,xy} - S_{-,xy})$$

**S* = significance

Decay length projected

onto Jet axis, $L_{+,xy}$

Previous Results (CCFR/NuTeV)

CCFR/NuTeV (Z.Phys.C65:189-198,1995)

- Opposite sign dimuon events in neutrino-nucleon collisions
- $\nu + N \rightarrow \mu^- + c + X \rightarrow \mu^- + (\mu^+ + \nu_\mu + X_c) + X$
- $\kappa = \frac{\int_0^1 dx [xs + x\bar{s}]}{\int_0^1 dx [x\bar{u} + x\bar{d}]} = 0.477^{+0.063}_{-0.053}$

Figure 3: The quark sea distribution $x\overline{q}(x,\mu^2 = 4.0 \text{ GeV}^2/\text{c}^2)$ determined at next-to-leading order and leading order.

Figure 4: The strange quark distribution $xs(x, \mu^2 = 4.0 \,\text{GeV}^2/\text{c}^2)$ determined at next-to-leading order (described in section 4.1) and leading order. The band around the NLO curve indicates the $\pm 1\sigma$ uncertainty in the distribution.

Previous Results (ATLAS)

ATLAS (Eur. Phys. J. C 77 (2017) 367)

- p + p collisions at $\sqrt{s} = 7 TeV$
- $r_s = \frac{s+\bar{s}}{2\bar{d}} = 1.19 \pm 0.07$

•
$$R_s = \frac{s+\bar{s}}{\bar{u}+\bar{d}} = 1.13 \pm 0.05$$

** $Q^2 = 1.9 \ GeV^2$, $x = 0.023$

• The large discrepancy between the previous (CCFR/NuTeV) and the new (ATLAS) analyses brings the need to revisit this topic with a different approach.

The Hadron Electron Ring Accelerator, HERA

ZEUS Detector

- Run period 1992 2007
- Uranium Plastic-scintillator Calorimeter (CAL)
- Wire chamber (CTD)
- Silicon Microvertex Detector (MVD, installed in 2000)

Jae Nam

9/12/17

HERA II Data

- Unpolarized events ~ 3%
- Integrated luminosity ~ $370 \ pb^{-1}$
- Data & pre-generated MC stored in ZEUS Common nTuple
- Expect to see $N_{CC} \sim 10,000 \& N_{Charm} \sim 100$ after decay length subtraction

Year	Collision	e^+ / e^- Energy (GeV)	P Energy (GeV)	Integrated Luminosity (pb^{-1})
2003/04	$e^+ + P$	27.5	920	~ 41
2004/05	$e^- + P$	27.5	920	~ 134
2006	$e^- + P$	27.5	920	~ 55
2006/07	$e^+ + P$	27.5	920	~ 142

ZEUS Online Trigger System

Trigger Selection

- Coarse selection by ZEUS three-level trigger system.
 - FLT : Energy, E_T , P_T in CAL.
 - SLT : Bunch-crossing time, Topology of calorimeter energy deposits and P_T .
 - TLT : Track reconstruction and vertex finding
- DST : Further pseudo-trigger level at event reconstruction stage

Charged Current Event Selection (Offline)

CC Selection	$P_{T,miss} > 12 \ GeV \text{ and } P'_{T,miss} > 10 \ GeV$ ** $P'_{T,miss} = P_{T,miss}$ measurement excluding ones from cells adjacent to the forward beam hole
Kinematic cut (Optiomal resolution/low BG)	$Q_{JB}^2 > 200 \ GeV^2$ and $y_{JB} < 0.9$ ** Q_{JB}^2 and y_{JB} preset variables in common nTuple
PhP rejection	$V_{AP}/V_P < 0.25 \text{ (for } P_{T,miss} < 20 GeV\text{)}$ $V_{AP}/V_P < 0.35 \text{ (else)}$ $** \frac{V_{AP}}{V_P} = \text{ratio of antiparallel/parallel components of hadronic transverse momentum}$ $** V_{AP} = -\sum_{i} \vec{P}_{T,i} * \hat{n}, V_P = \sum_{i} \vec{P}_{T,i} * \hat{n}, \hat{n} = \overline{P_T}/P_T$
NC DIS rejection	reject if $\delta > 30 \ GeV \&\& P_T > 30 \ GeV \&\& \dots$ ** $\delta = \sum_{h(E - P_z)_h}$

** These selection cuts are from the previous CC analysis. Eur. Phys. J. C (2010) 70: 945–963

Jet/Track/Secondary Vertex Selection

Lat Salastian	At least 1 jet, each with $E_T > 5 GeV$
Jet Selection	$-2.5 < \eta < 2.5$
	$P_{T,track} > 0.5 \ GeV$
Track Selection	$(N_{CTD} \ge 3 N_{STT} \ge 1) \&\& N_{MVD} \ge 4$
	Distance to closest jet $R = \sqrt{\Delta \varphi^2 + \Delta \eta^2} < 1$
	$\chi^2/N_{dof} < 6$
Secondary Vertex Selection	$ Z_{secvtx} < 30 \ cm$
	Distance to beamspot $\sqrt{\Delta x^2 + \Delta y^2} < 1 \ cm$

** These selection cuts are from the previous HF analysis. JHEP 1409 (2014) 127, Eur.Phys.J.C71:1659,2011

Current Status & Summary

- CC events have been selected from all HERA II data.
- Charm signal with suppressed LQ contribution has been observed in the mirrored L_{xy} and S_{xy} plots.
- Detector-level & Reconstruction-level corrections will be quantified along with analysis on systematic uncertainty
- The charm cross section will be extracted by sub-dividing the kinematic plane into Q^2 bins.

Special Thanks to...

Dr. Bernd Surrow at Temple University NUPAX group

9/12/17

Dr. Achim Geiser at ZEUS ZEUS collaboration

