Using a positron beam to measure
the speed of light anisotropy

Bogdan Wojtsekhowski, Jefferson Lab

* Physics landscape
* Search for new beyond-the-Standard-Model physics

* Positron & electron test of the theory of special relativity
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Quantum Gravity
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Quantum Gravity

no escape (Schwarzschild) radius: r, = 2cc;2m
Compton wave length: A = %
Planck mass: A = r_, or M, = %

M,, = 10'? GeV

L, = 107" fm

Pl

The proton size is one fermi: 103 cm

Quantum EM scale is an atom size : 108 cm

Positrons at Jefferson Lab, JPos17 6



Black hole radius

Quantum scale

Quantum
gravity scale

Quantum Gravity

no escape (Schwarzschild) radius: r, =

Compton wave length: A = —

Planck mass: A = r_, or M, = ne

M_, = 10'° GeV

L. = 1071 f,m

Pl

The proton size is one fermi: 103 cm

(3)

]('
QG: E?=m?+p*+ EpfVp + £ Zp’+ ppp +

September 14,2017

Positrons at Jefferson Lab, JPos17




Quantum Gravity

Black hole radius

Quantum scale

Quantum
gravity scale

e e By

/ —

~

no escape (Schwarzschild) radius: r, =

Compton wave length: A = —

Planck mass: A = r_, or M, = ne

M_, = 10'° GeV

L. = 1071 f,m

Pl

The proton size is one fermi: 103 cm

(3)

]('
QG: (E2—m +p ‘HEPf( )p“rf@) Zp’+ ppp + .

\

\—_’

September 14,2017

Positrons at Jefferson Lab, JPos17




Black hole radius

Quantum scale

Quantum
gravity scale

Quantum Gravity

no escape (Schwarzschild) radius: r, = 2cc;2m
Compton wave length: A = %
Planck mass: A = r_, or M, = %

M, = 10'° GeV

L. = 1071 f,m

Pl

The proton size is one fermi: 103 cm

- (3)

f
QG: E*=m? +p2/+E f(l)p”rf@) Zp’+ ppp —

N

T —

September 14,2017

Positrons at Jefferson Lab, JPos17




Physics beyond the Standard Model

» Neutrino masses
> Dark matter
» Searches in PVDIS, Moller, QWeak

The proposed experiment has sensitivity
to reach the onset of Quantum Gravity
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Einstein’s postulates of physics

The laws by which the states of physical systems
undergo change are not affected, whether these
changes of state be referred to the one or the other of
two systems of coordinates in uniform translatory motion.

Any ray of light moves 1n the “stationary” system
of coordinates with determined velocity ¢, whether
the ray be emitted by a stationary or by a moving body.

Einstein, Ann. d. Physik 17 (1905)
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The speed of light measurement

The speed of light 1s said to be isotropic if it has the same
value when measured in any/every direction.

The constancy of the one-way speed in any given inertial
frame 1s the basis of the special theory of relativity.

How do we measure the speed?

one-way: v; = d,g/tag
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The speed of light measurement

The speed of light 1s said to be isotropic if it has the same
value when measured in any/every direction.

The constancy of the one-way speed in any given inertial
frame 1s the basis of the special theory of relativity.

How do we measure the speed?

O - > O

A round-trip (two-way): B
Vy = (dpptdpa)/(tapttap)
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The speed of light

The speed of light 1s said to be isotropic if it has the same
value when measured in any/every direction.

The constancy of the one-way speed in any given inertial
frame 1s the basis of the special theory of relativity.

One-way speed and two-way speed: What 1s the difference?
What is experimentally investigated most often is

the round-trip speed (or "two-way’’ speed of light)
from the source to the detector and back.
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Michelson-Morley experiment

The speed of light 1s said to be isotropic 1f it has the same
value when measured in any/every direction.

two-way speed

Michelson-Morley Interferometer /N
Int
sﬁrce
Mkmscop'e Beam

Splitter

“Mirrors

accuracy scale: lum / 10m ~ 1077
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The most recent experiment

ARTICLE Communications/Nature
Received 17 Jan 2015 | Accepted 25 Jul 2015 | Published 1 Sep 2015

Direct terrestrial test of Lorentz symmetry
in electrodynamics to 10~ 18

Moritz Nagel'*, Stephen R. Parker?*, Evgeny V. Kovalchuk!, Paul L. Stanwix?, John G. Hartnett?3,
Eugene N. lvanov?, Achim Peters' & Michael E. Tobar?

Lorentz symmetry is a foundational property of modern physics, underlying the standard
model of particles and general relativity. It is anticipated that these two theories are
low-energy approximations of a single theory that is unified and consistent at the Planck
scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects
appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed
to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources
to perform a modern Michelson-Morley experiment and make the most precise direct

terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating
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The speed of light measurement

The speed of light 1s said to be isotropic if it has the same
value when measured in any/every direction.

The constancy of the one-way speed in any given inertial
frame 1s the basis of the special theory of relativity.

How do we measure the speed?

one-way: v, = d,g/trg
O > O

Two clocks and stable distance A-to-B

A B
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Tests of Lorentz Invariance

» Two-way speed via rotating cavities: Ac,/c < 10718

* One-way speed via asymmetric optical ring: Ac,/c < 1014

At what level could we expect a Lorentz Invariance violation?

(3)

E? =m? 4+ p® +|EpifMp +fi(j2)ppj+E—J;p P+ ...

dispersion equation in some LI violation models
see, Mattingly, Living Rev.Rel. 8 (2005) 5
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Tests of Lorentz Invariance

» Two-way speed via rotating cavities: Ac,/c < 10718

* One-way speed via asymmetric optical ring: Ac,/c < 1014

At what level could we expect a Lorentz Invariance violation?

(3)

E? = m? +p® HEpmf Upt i £ 0 + E—J;p’p”p"”’ —

The extra term leads to a directional variation of the speed of light.
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Tests of Lorentz Invariance

« Two-way speed via rotating cavities: Ac,/c < 107"

* One-way speed via asymmetric optical ring: Ac,/c < 10!

At what level could we expect a Lorentz Invariance violation?
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Tests of Lorentz Invariance

Two-way speed via rotating cavities: Ac,/c < 10718

One-way speed via asymmetric optical ring: Ac,/c < 1014

At what level could we expect a LI violation?

M, /Mp; ~ 10717
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Measurement of the speed

Relative speed would be enough: light vs. beam

Stable beam of electrons

photons
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Measurement of the speed

Relative speed would be enough: light vs. beam

Stable beam of electrons

photons

The difference (c-v) defines the Lorentz factor.

September 14,2017 Positrons at Jefferson Lab, JPos17

23



Speed of light variation and Lorentz factor

T e (eto)

v oA When the value of the speed v 1s fixed,
a tiny variation of ¢ in the direction
of motion leads to a large variation of v,
which provides a powerful enhancement

0 Ay _ . Ac
V_C /y o C
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A concept of a new Lorentz Invariance test

» Explore the difference of (v-c¢) in opposite directions of v
» Use a very small value of (v-c)/c ~ 10, ultra relativistic electrons

The method (BW in EPL, 108 (2014) 31001; arXiv:150902754 )

 Momentum measurements at the opposite ends of the arc:

We
P
R = P—A , ratio of momenta in segments A and B —
5 |
1 <
oc o< [AR(t) -sin |w,t + ¢| dt
J . time
sensitive
direction
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Beam 1n an accelerator

1(s) = x,(s) +n(s) x F

Hor. displacement = Dispersion times Momentum deviation

as a first-order estimate using the dispersion along the orbit:

Marge ~ Lom , o, ~d50um

o [pA_pB} . ["”’A} Do [ﬁ—B} ~ 05104

pa/ver TIA B

A large number of Beam Position Monitors could be used
for higher accuracy.

September 14,2017 Positrons at Jefferson Lab, JPos17 26



Beam 1n an accelerator

A
x(s) = x,(s) +n(s) x =5
O'Ap B . - O_time
p ¢ {An} @ n ?777

consider the first term statistics over 100 seconds:

 Ap —4 2.5-10—6 —8
30 = 05107 x |/ 2510°° ~ 10
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Beam 1n an accelerator

1(s) = x,(s) +n(s) x F

Hor. displacement = Dispersion times Momentum deviation

Back to statistical estimations:

O

gp — 1()_8 a short time ~100 s

O- R
A measurement over 24 hours => —=* = 310 10
a few days’ experiment: oc/c ~ 10°'%

It would be 10,000 times better than the current limit
for the one-way oc/c
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Accelerator stability

It would be great to have a 10-'Y level of
magnet and geometry stability (over 24 hours).

However, typical stability is of 10-°!
Analysis of the frequency will help, but ..

The solution 1s two beam operation:

positrons and electrons,
moving in opposite directions.
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Cornell electron/positron storage ring

[: CESR

Storage Ring
2

7
Synch'rolron

+

e
Transfer Line Transfer Line

99 BPMs, two single-bunch beams

Four 5-8 hour data runs were taken.

Linac
Gun_ Converter -

%Q Experiment analysis 1s in progress.
CHESS . chess The first result will be posted in 2017.
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Experiment at CEBAF
fierson Lab -

HOME | SEARCH | CONTACT JLAB

12GeV

ACCELERATOR

NORTH WEST NORTH LINAC NORTH EAST

SOUTH WEST SOUTH LINAC
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Positron beam for CEBAF

injector e-

D o T et e S
. N
| \
— | < 100 W beam (]
A : ',“.. /

SOUTH WEST SOUTH LINAC

Always both beams — electron and positron!

Minimum new construction.
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Positron beam for CEBAF

injector e-
. =T Tﬂ<\\\
g 4 \\\
HALLS < 100 W beam ; !\
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a BS ] . // /
E \':-'?-’-‘;;-._ o . = 4 —— — > -+ /
SOUTH WEST SOUTH LINAC

Always both beams — electron and positron!

Minimum new construction.
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Positron beam for CEBAF

injector e-

e e ‘_ _________ = 4\\ \

/ N

| \
Tl & | < 100 W beam (]

SOUTH WEST SOUTH LINAC

Always both beams — electron and positron!

Minimum new construction.
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Summary

* The search for a Quantum Gravity effect in the dispersion formula
1s well motivated. The onset of QG 1s within current capability.

= A search for possible anisotropy of the maximum attainable speed

1s proposed using the high energy electron and positron beams
via beam deflections 1n the magnetic arcs at CEBAF.
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Synchrotron Radiation

C.E* o R S et et
= 26.5 (I:[(;('\ |) I)) | | keV1.
P ’ ’
' C. 1
agneticringis  /p | — Up _ oC,E ;
TR e 2= Rp

u. [keV] = hw. = 0.665 E°[GeV] B[T]. Photon energy ~ 30 keV

N =inres P :_‘ u Number of emitted photons
| T V3  perrevolution = /15 ~ 1000

Jitter of beam energy centroid (in one second)

<1 MeV/10°=> 1019 relative effect
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U-boson search, concept 2006

B. Wojtsekhowski, P. Degtiarenko, A. Freyberger, L. Merminga

Positron source

150 kW 160 MeV dump

/’/ Slow positron
] Optics
1 N / |
; N ——Nil } 1 mA electron beam
positron beam / —t ‘

30 4+/ 1.5 MeV - < fffffffffffffffffff = 30 cm diameter flywheel

45 micron emittance

\ 30-100 nA positron beam /
N ~ 170 +/ 1.5 MeV 7
-
~

‘———’
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JP0s09: JLab positron beam considerations
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SLAC 1977 -Measurement of e*-e- Asymmetry in Deep-Inelastic
Bremsstrahlung, D.L. Fancher et al.
p(e,ey)X, v* max energy of 9.5 GeV, -t up to 2 GeV?, 2 nA * 200 hours run

Brodsky, Gunion, Jaffe (1972)
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+ anything.



