

SEARCHING FOR DARK PHOTONS WITH POSITRONS AT JEFFERSON LAB

Luca Marsicano INFN Genova, Università Di Genova

International Workshop on Physics with Positrons at Jefferson Lab September 12-15, 2017

Thomas Jefferson National Accelerator Facility Newport News, VA

Dark Matter Search

- Dark Matter (DM) existence is highly motivated by various astrophysical observations (Galaxy Rotation Curves, CMBR fluctuations, collisions between galaxy clusters...)
- DM properties remain to date unknown (interactions with Standard Model, mass..)

DM Thermalization hypothesis: thermal equilibrium with primordial Universe and decoupling due to Universe cooling

- → Present DM density depends on DM-SM interaction properties
- → DM mass and interaction cross section are bound

If $m_{DM} \sim 100 \text{ GeV} \rightarrow \text{typical Weak Interaction cross section: "WIMP Miracle"}$

From WIMPs to Dark Sector

- WIMPs search: detectors made of large volumes of active materials to detect cosmogenic DM scattering over nuclei
 - -low sensitivity to light DM candidates (<10 GeV)
- NO evidence of WIMP to date
 - → Search for lower mass candidates

- To preserve DM thermalization: lower DM mass → higher interaction cross section
 → new force necessary
- Simplest Model: Dark Sector of χ (MeV-GeV mass range) particles coupled to SM through a U(1) massive gauge boson, the Dark Photon (A',U), kinetically mixed with SM photon:

$$L_{kin.mix} = \varepsilon F^{\mu\nu} F'_{\mu\nu}$$

A' Invisible VS Visible Decay

A' decay depends on the $m_{A'}/m_{\chi}$ ratio:

• If $m_{A'} < 2m_{\chi}$, main decay:

Visible: A'→//

• If $m_{A'} > 2m_{\chi}$, main decay:

Invisible: $A' \rightarrow \chi \chi$

The paradigm addressed in this work

Searching for A' with positrons

A' production from e+e- annihilation:

- A' can be probed with e+-on target experiments (e.g. PADME at LNF, High Energy Phys. 2014:959802; VEPP-3, arXiv:1207.5089 [hep-ex])
- Produced A' exit the detector volume without interacting
- Detect recoiling y with EM calorimeter and compute the Missing Mass:

$$M^{2}_{MISS} = (P_{e} + P - P_{y})^{2}$$

- Sensitivity of proposed experiments is limited by available energy in CM, going as $\sqrt{\mathsf{E}_{\mathsf{BEAM}}}$.
- 11 GeV e+ beam @JLab would allow to exceed this limit

The PADME Experiment

- PADME is the first e+ on target experiment searching for Dark Photon
- 500 MeV DAΦNE-LINAC e+ beam (search for A' masses up to ~ 22.5 MeV)
- 15 cm radius BGO calorimeter placed ~2 m downstream the target
- Magnet and Veto system to bend charged particles and reduce background from Bremsstrahlung events.

A' Experiment With e⁺@JLab

Required Beam Parameters:

- Current: 10 nA 100 nA
- Energy: 11 GeV (Max m_{A'} ~ 106 MeV)
- Momentum Dispersion <1%
- Angular Dispersion: <0.1 mrad

Target:

- Thickness: 100 μm (Possible to use thicker target, at the cost of a higher multiple scattering rate)
- Material: Carbon (compromise between density and low A/Z ratio)

Calorimeter Parameters

Cylindrical shape:

Radius: 500 mm

Inner hole: 20 mm radius

1x1x20 cm³ crystals (indicative)

Angular acceptance at a distance of 10 m from the target:
 ε ~ 50 mrad

Performance:

Energy Resolution:

 $\sigma(E)/E = 0.02/sqrt(E(GeV))$

Angular resolution:

5 mm / 10 m = 0.5 mrad

Rate: ~20 kHz per crystal

Paramete Units:	r: ρ g/cm ³	MP °C	X_0^* cm	R_M^* cm	dE^*/dx MeV/cm	-	$ au_{ m decay}$ ns	$\lambda_{ m max}$ nm	$n^{ atural}$	Relative output [†]		d(LY)/d7 %/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	245	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.5	30.7	650^{s}	300^{s}	1.50	36^s	no	-1.9^{s}
							0.9^{f}	220^{f}		4.1^{f}		0.1^{f}
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1220	550	1.79	165	slight	0.4
CsI(pure)	4.51	621	1.8€	3.57	5.6	39.3	30^s	420^s	1.95	3.6^s	slight	-1.4
							6^f	310^{f}		1.1^{f}		
PbWO ₄	8.3	1123	0.89	2.00	10.1	20.7	30^s	425^s	2.20	0.3^s	no	-2.5
							10^f	420^{f}		0.077^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	402	1.82	85	no	-0.2
LaBr ₃ (Ce	5.29	788	1.88	2.85	6.9	30.4	20	356	1.9	130	yes	0.2

Materials:

- PbWO4, LSO(Ce) best options: high light yield and density, small R_M and X_0 , fast decay (good for timing and pile up)
- BGO,BSO slower, lower light yield, but still valuable options

Magnet And Veto System

- Magnetic field in the target region is necessary to bend away the beam and other charged particles from the ECal trajectory
- A constant field of 2 T over a 2 m region is required (easily achievable)
- e⁺ losing energy via Bremsstrahlung in the target hit the veto detectors
- An efficiency ε = 99.5% is assumed for the veto system; (efficiency achieved by PADME detector)
 - → A 5X10-3 reduction of Brem. background is assumed

PADME Veto System

- -Time resolution better than 500 ps
- -Efficiency better than 99.5% for MIPs
- -10X10X180 mm³ plastic scintillator bars

Main Background Processes

Main processes that result in a single gamma hitting the ECal:

Bremsstrahlung Background

- Brems. background estimated using GEANT4
- Simulation of 2X10¹⁰ 11 GeV positrons impinging on the carbon target
- Missing mass spectrum computed for ys reaching the volume of the ECal
- The majority of y from Brems. process falls into the Ecal central hole
- Still, Brems. is the biggest contribution to the γ rate on the Ecal (20 Khz per crystal with I=10 nA and 100 μm target)

2-y Annihilation

- 2-γ ann. background evaluated using CALCHEP (arXiv:1207.6082 [hep-ph])
- 106 annihilations are generated and the topology of events is studied:
 - In the ~75% of simulated events no y hits in the Ecal volume
 - In the ~24% both y hit the ECal (event can be rejected)
 - -In the ~1.4% one y hits the ECal
- The energy for single γ hits is centered at ~ 420 MeV

with energy cut E_{cut} = 500 MeV →

10-4 reduction → 2-y ann. background is negligible

3-y Annihilation

- Same procedure used for 2-y ann. background
- Total 3-y ann. cross section:

$$\sigma_{e^+e^- \rightarrow \gamma \gamma \gamma} \sim 0.16 \, \sigma_{e^+e^- \rightarrow \gamma \gamma}$$

- In the ~17% of events a single γ hits Ecal
- Background from 3-y ann. can't be neglected

Signal

- Signal events generated with CALCHEP for 6 different values of m_{A'} in the 1-103 MeV range
- Total cross section (outside resonance region):

$$\sigma_{e^+e^- \to \gamma A'} \sim 2 \, \epsilon^2 \sigma_{e^+e^- \to \gamma \gamma}$$

- Estimated signal acceptance with E_{cut} = 500 MeV: $ε(m_{A'}) \sim 0.2$ (roughly independent of $m_{A'}$)
- Missing Mass spectrum computed for different A' masses; measured M_{miss}^2 resolution $\sigma(m_{A'}^2)$

Reach Calculation

- Measurement run of 1 year, with 50% beam on time.
- $N_s(m_A)$: number of expected signal events for a given $m_{A'}$; mixing parameter value fixed to $\varepsilon = 1$
- $N_B(m_A)$: number of expected background events (from both brems. and 3y-ann.) with computed M_{miss}^2 in the interval:

$$[m_{A'}^2 - 2 \sigma(m_{A'}^2), m_{A'}^2 - 2 \sigma(m_{A'}^2)]$$

Minimum measurable value of ε²:

$$\epsilon_{min}^{2}(m_{A'}) = 2 \frac{\sqrt{N_{B}(m_{A'})}}{N_{S}(m_{A'})}$$

Reach

Conclusions

- A preliminary study of the achievable sensitivity for a Dark Photon experiment with a 11 GeV e+ beam at Jefferson Lab was carried out
- The assumptions made on the detector performance (electromagnetic calorimeter resolution, veto system efficiency) are consistent with existing detectors
- This experiment would probe unexplored regions of the A' parameter space, exceeding in sensitivity other Missing Mass experiments
- The unique features of a positron beam at JLab (high energy, continuous structure, capability to switch between different energy values) would make it the best option for this class of experiments