Determination of the Proton Spin Structure Functions for $0.05 < Q^2 < 5 \text{ GeV}^2$ using CLAS

Robert Fersch Christopher Newport University for the EG1 collaboration

Structure of the Nucleon

Unpolarized distributions q, g Helicity Δq , Δq $\Delta f(x)$ $\Delta f(x)$ $\delta f(x)$ $\delta f(x)$ $\delta f(x)$ $\delta d.o.f.$ completely describe the nucleon at leading twist when $k_T = 0$

Structure of the Nucleon

Helicity: $\Delta q = q^+ - q^-$

Incident electron couples to quarks of opposite longitudinal spin

Structure function $g_1(x,Q^2) \sim \sigma_{1/2} - \sigma_{3/2}$ Requires longitudinally polarized beam and target

The EG1 experiment

ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV)

CLAS Longitudinally Polarized Target

¹⁵NH₃ and ¹⁵ND₃ target cells
Typical polarizations of 75% (H) and 30% (D)
¹²C and LHe target cells for unpolarized background subtraction

> ammonia target cell

The EG1 experiment ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) Kinematic coverage & statistics

Many papers already published using EG1 data:

• N. Guler *et al. (CLAS Collaboration)*, "Precise Determination of the Deuteron Spin Structure at Low to Moderate Q² with CLAS and Extraction of the Neutron Contribution", Phys. Rev. C 92, 055201(2015).

• P. Bosted *et al. (CLAS Collaboration*). "Target and Beam-Target Spin Asymmetries in Exclusive π^+ and π^- electroproduction with 1.6- to 5.7-GeV electrons", Phys. Rev. C 94, 055201(2016)

- H. Avakian et al. (CLAS Collaboration), "Measurement of Single and Double Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target", Phys. Rev. Lett. 105, 262002 (2010).
- Y. Prok et al. (CLAS Collaboration), "Moments of the Spin Structure Functions g^p₁ and g^d₁ for 0.05 < Q² < 3.0 GeV²", Phys. Lett. B 672, 12 (2009).
- A. Biselli *et al. (CLAS Collaboration)*, "First Measurement of Target and Double Spin Asymmetries for ep → e'pπ⁰ in the Nucleon Resonance Region Above the Δ(1232)", Phys. Rev. C 78, 045204 (2008).
- P.E. Bosted et al. (CLAS Collaboration), "Ratios of ¹⁵N/¹²C and ⁴He/¹²C Inclusive Electroproduction Cross Sections in the Nucleon Resonance Region", Phys. Rev. C 78, 015202 (2008).
- P.E. Bosted *et al. (CLAS Collaboration)*, "Quark-Hadron Duality in Spin Structure Functions g₁^p and g₁^d", Phys. Rev. C 75, 035203 (2007).
- K.V. Dharmawardane et al. (CLAS Collaboration), "Measurement of the x and Q² Dependence of the Spin Asymmetry A₁ of the Nucleon", Phys. Lett. B. 641, 28 (2006).
- S. Chen et al. (CLAS Collaboration), "Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target", Phys. Rev. Lett. 97, 072002 (2006).
- A. Biselli *et al. (CLAS Collaboration)*, "Study of ep → epπ⁰ in the Δ(1232) Mass Region Using Polarization Asymmetries", Phys. Rev. C 68, 035202 (2003).
- R. Fatemi et al. (CLAS Collaboration), "Measurement of the Spin Structure Functions in the Resonance Region for Q² from 0.15 to 1.6 GeV²", Phys. Rev. Lett. 91, 222002 (2003).
- J. Yun et al. (CLAS Collaboration), "Measurement of Inclusive Spin Structure Functions of the Deuteron with CLAS", Phys. Rev. C 67, 055204 (2003).
- R. DeVita et al. (CLAS Collaboration), "First Measurement of the Double Spin Asymmetry in ep → e'π⁺n in the Resonance Region", Phys. Rev. Lett. 88, 082001 (2002).

Impact of JLab / EG1 data on polarized PDFs

Global analysis by JAM (JLab Angular Momentum) Theory group (W. Meltinchouk *et al.*)

Phys Rev D 93, 074005 (2016)

spin distributions within the nucleon

Final proton "long paper" has completed collaboration review and resulting corrections are done; author check then submission to Phys. Rev. C next

Determination of the Proton Spin Structure Functions for $0.05 < Q^2 < 5$ GeV² using CLAS

R.G. Fersch,⁷ N. Guler,²⁹ P. Bosted,³⁶ A. Deur,³⁶ K. Griffioen,⁴² C. Keith,³⁶ S.E. Kuhn,²⁹ R. Minehart,⁴¹ Y. Prok,²⁹ K.P. Adhikari,²⁵ Z. Akbar,¹² M.J. Amaryan,²⁹ S. Anefalos Pereira,¹⁷ G. Asryan,⁴³ H. Avakian,^{36,17} J. Ball,⁶ I. Balossino,¹⁶ N.A. Baltzell,³⁶ M. Battaglieri,¹⁸ I. Bedlinskiy,²² A.S. Biselli,^{9,4} W.J. Briscoe,¹⁴ W.K. Brooks,^{37,36} S. Bültmann,²⁹ V.D. Burkert,³⁶ Frank Thanh Cao,⁸ D.S. Carman,³⁶ A. Celentano,¹⁸ S. Chandavar,²⁸ G. Charles,²⁹ T. Chetry,²⁸ G. Ciullo,^{16,10} L. Clark,³⁹ L. Colaneri,⁸ P.L. Cole,^{15,36} N. Compton,²⁸ M. Contalbrigo,¹⁶ O. Cortes,¹⁵ V. Crede,¹² A. D'Angelo,^{19,32} N. Dashyan,⁴³ R. De Vita,¹⁸ E. De Sanctis,¹⁷ C. Djalali,³⁴ G.E. Dodge,²⁹ R. Dupre,²¹ H. Egiyan,^{36,42} A. El Alaoui,³⁷ L. El Fassi,²⁵ L. Elouadrhiri,³⁶ P. Eugenio,¹² E. Fanchini,¹⁸ G. Fedotov,^{34,33} A. Filippi,²⁰ J.A. Fleming,³⁸ T.A. Forest,¹⁵ M. Garc con,⁶ G. Gavalian,^{36,26} Y. Ghandilyan,⁴³ G.P. Gilfoyle,³¹ K.L. Giovanetti,²³ F.X. Girod,^{36,6} C. Gleason,³⁴ E. Golovatch,³³ R.W. Gothe,³⁴ M. Guidal,²¹ L. Guo,^{11,36} K. Hafidi,¹ H. Hakobyan,^{37,43} C. Hanretty,³⁶ N. Harrison,³⁶ D. Heddle,^{7,36} K. Hicks,²⁸ M. Holtrop,²⁶ S.M. Hughes,³⁸ Y. Ilieva,^{34,14} D.G. Ireland,³⁹ B.S. Ishkhanov,³³ E.L. Isupov,³³ D. Jenkins,⁴⁰ D. Keller,⁴¹ G. Khachatryan,⁴³ M. Khachatryan,²⁹ M. Khandaker,^{27, *} A. Kim,⁸ W. Kim,²⁴ A. Klein,²⁹ F.J. Klein,⁵ V. Kubarovsky,^{36,30} V.G. Lagerquist,²⁹ L. Lanza,¹⁹ P. Lenisa,¹⁶ K. Livingston,³⁹ H.Y. Lu,³⁴ B. McKinnon,³⁹ C.A. Meyer,⁴ M. Mirazita,¹⁷ V. Mokeev,^{36, 33} R.A. Montgomery,³⁹ A Movsisyan,¹⁶ C. Munoz Camacho,²¹ G. Murdoch,³⁹ P. Nadel-Turonski,³⁶ S. Niccolai,²¹ G. Niculescu,²³ I. Niculescu,²³ M. Osipenko,¹⁸ A.I. Ostrovidov,¹² M. Paolone,³⁵ R. Paremuzyan,²⁶ K. Park,^{36, 24} E. Pasyuk,^{36, 2} W. Phelps,¹¹ S. Pisano,¹⁷ O. Pogorelko,²² J.W. Price,³ D. Protopopescu,^{26,†} B.A. Raue,^{11,36} M. Ripani,¹⁸ D. Riser,⁸ A. Rizzo,^{19,32} G. Rosner,³⁹ P. Rossi,^{36,17} P. Roy,¹² F. Sabatié,⁶ C. Salgado,²⁷ R.A. Schumacher,⁴ Y.G. Sharabian,³⁶ A. Simonyan,⁴³ Iu. Skorodumina,^{34, 33} G.D. Smith,³⁸ D. Sokhan,³⁹ N. Sparveris,³⁵ I. Stankovic,³⁸ S. Stepanyan,³⁶ I.I. Strakovsky,¹⁴ S. Strauch,³⁴ M. Taiuti,^{13,‡} Ye Tian,³⁴ B. Torayev,²⁹ M. Ungaro,^{36,30} H. Voskanyan,⁴³ E. Voutier,²¹ N.K. Walford,⁵ X. Wei,³⁶ L.B. Weinstein,²⁹ N. Zachariou,³⁸ and J. Zhang^{36, 29} (The CLAS Collaboration)

Analysis of Polarized Inclusive ep scattering

Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and – $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations

$$A_{\parallel} = \frac{1}{P_b P_t F_{DF}} \frac{n^+ - n^-}{n^+ + n^-}$$

Analysis of Polarized Inclusive ep scattering

Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and - $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations

$$A_{\parallel} = \frac{1}{P_b P_t F_{DF} n^+ + n^-}$$

Dilution factor from 12C, LHe runs and radiated cross section model

normalization to global data 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.7 0.2 0.2 0.70.7

2.5

 Q^2 (GeV²)

2

3.5

3

4.5

Polarization product from

1.5

elastic asymmetry

 $0^{11}_{0.5}$

Analysis of Polarized Inclusive ep scattering

(also nuclear polarization

and e⁺e⁻ corrections)

(difference

between red,

blue lines)

Radiative

corrections

Double spin asymmetry between + $(\uparrow\uparrow,\downarrow\downarrow)$ and – $(\uparrow\downarrow,\downarrow\uparrow)$ beam and target polarizations

$$A_{\parallel} = \frac{1}{P_b P_t F_{DF}} \frac{n^+ - n^-}{n^+ + n^-}$$

Physics quantities

virtual photon asymmetries A₁ and A₂

$$A_{||}(\nu, Q^2) = D[A_1^p(\nu, Q^2) + \eta A_2^p(\nu, Q^2)]$$

spin structure functions g_1 and g_2

$$\frac{A_{||}}{D} = (1 + \eta\gamma)\frac{g_1^p}{F_1^p} + \gamma(\eta - \gamma)\frac{g_2^p}{F_1^p}$$

(kinematics/models)

$$D = \frac{1 - E'\varepsilon/E}{1 + \varepsilon R}; \quad \eta = \frac{\varepsilon\sqrt{Q^2}}{E - E'\varepsilon} \qquad R = \frac{\sigma_L}{\sigma_T}$$

$$\gamma = \frac{2Mx}{\sqrt{Q^2}}$$

A₁ for the proton shown against world data

 $A_{||}(\nu, Q^2) = D[A_1^p(\nu, Q^2) + \eta A_2^p(\nu, Q^2)]$

2.5

3.0

A₁ Deep Inelastic Scattering (Q² > 1 GeV², W > 2 GeV)

DIS results at high x provide insights into QCD models of the nucleon

g₁ for the proton shown against world data

х

g_1/F_1 vs. Q^2 results for the proton

$$\frac{A_{||}}{D} = (1 + \eta \gamma (\frac{g_1^p}{F_1^p} + \gamma (\eta - \gamma) \frac{g_2^p}{F_1^p})$$

NLO PDF fit at $Q^2 = 5$ GeV²

DIS limit (W = 2 GeV)

Moments of *g*¹ Needed to test *sum rules* and determine matrix elements in the OPE (Operator Product Expansion)

(integrated over x from x=0.001 to elastic threshold)

("first moment" of g_1)

 $\Gamma_1 = \int g_1 \, \mathrm{d}x$

see also Prok, et al. Phys. Rev. B 672, 12 (2009)

Higher Twist analysis of Γ₁ (includes elastic contribution)

Extraction of higher twist elements through a fit by A. Deur

Forward Spin Polarizability see also Prok, et al. Phys. Rev. B 672, 12 (2009)

For scattering cross-sections in terms of Compton amplitudes

$$\begin{split} \gamma_0 &= \frac{1}{4\pi} \int_{\nu_{th}}^{\infty} \frac{\sigma_{3/2} - \sigma_{1/2}}{\nu'^3} d\nu' \\ &= \frac{16M^2 \alpha}{Q^6} \int_0^{x_{th}} x^2 A_1(x, Q^2) F_1(x, Q^2) dx \end{split}$$

Higher Moments

Large *x*-range provided opportunity to measure these

$$\Gamma_1^n = \int x^{n-1} g_1(x, Q^2) dx$$

Tests of Bloom-Gillman Duality

Averaging over resonances - comparing to extrapolated NLO PDFs (see Bosted, *et al.* Phys. Rev. C 75, 035203 (2007))

"global" duality

"local" duality

First extraction of A₂ and g₂ from EG1 data

First extraction of A₂ and g₂ from EG1 data

little world data available!

g₂ extracted similarly

$$\frac{A_{||}}{D} = (1 + \eta \gamma) \frac{g_1^p}{F_1^p} + \gamma (\eta - \gamma) \frac{g_2^p}{F_1^p}$$

-Many EG1 publications helped build global models of nucleon spin structure! CLAS12 longitudinally polarized target design

-The 12 GeV longitudinally polarized target: higher x means better testing of QCD models

