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Future of Spectroscopy Analysis will be on 
the study of resonances that are hidden?

★ overlapping
★ wide
★ many-particles final states
★ having small cross-sections
★ with large non-resonant backgrounds
★ ...

In this environment, we need to identify the poles on 
the S-Matrix  and study the interference between states

•Ambiguities
•Leakages
•Contaminations

Furthermore

• Large Data Statistics
• Large Amount Of Simulation (MC)
• Mathematically complex amplitudes (models)
• Possible more complex methods of analysis
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Our philosophy

• Types of analysis
Parameter Estimation - Fitting
Model Selection - Bayesian
SIMULATION (Monte Carlo)

• Basic TOOLS/MODULAR to be use in the analysis 
• Well Documented (Tutorials-in-code documentation-Sphinx)
• Interact with multiple programing languages
• Interact with other amplitude analysis packages
• Integrated use of the JLab Scientific Computing Resources
• Parallelization & Vectorization
• Own graphical package and interface with PyROOT (CERN)

PyPWA
Liberate the user from software/hardware worries 
about amplitude analysis calculations. Provide the 
user with an “underneath” software/hardware 
framework (that is also accessible if the user needs 
to adjust).  <> AUTOMATION
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Scientific Computing Resources at Jefferson Lab

Summary of resources at JLab:

• High Performance Computing (HPC) for LQCD, ~8,440 cores, ~380 GPUs, and 48 Xeon Phi cards
• Batch Computing for Experimental Physics (the "farm"), ~3,800 cores
• Multiple Disk Systems (online storage), ~1.4 Petabytes
• The Tape Library for offline storage, 10 Petabytes
• Interactive nodes, a wide area gateway node, and several system administration support nodes

Xeon Phi (Knights Landing) + OmniPath Cluster (LQCD)

• 16p (2016 Phi, formally known as SciPhi-XVI ) -- 264 nodes, 64 cores, 16 GB high 
bandwidth memory, 192 GB main memory, 

      Omni-Path fabric (100 Gb/s), 1TB disk

Each Knights Landing (KNL) node has 64 cores, hyper-threaded 4 ways (256 virtual cores) running at 1.3 GHz.  The on-package high 

bandwidth memory has a bandwidth above 450 GB/s, and the main memory has a bandwidth of about 90 GB/s (available concurrently).

All farm nodes are connected to both an Ethernet fabric and an Infiniband fabric, where the IB fabric is used for high 

speed access to the file servers. 
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Implementation: PYTHON using basic numpy and scipy libraries

• Vectorization works by exploiting the combined add-multiply unit 
of the Intel Xeon Phi

• Scripts/GUI driven use of JLab resources (Farms).

• Include full documentation at code level  (and also tutorials examples...) 

• Many options for optimization (i.e. minimization algorithms) and plotting tools

• Many options for data formats (in and out) - auto-defined txt files /or 4-vectors...

-Installation can be accomplished using a simple pip install command 
for the whole package (command as a screenshot below)

• Include full low-level self-testing code (see below) 
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• Features and Design
•  Pythonic OOP practices
•  Python 2 & 3 compatibility

•  Python 2.7 & Python 3.3 - 3.6
•  Use of plugins to provide ultimate flexibility for each fit.

•  Each task is a plugin: multiprocessing, data loading, each minimizer, and even the main program logic are all 
loaded as plugins during the startup tasks..

•  Code design inspired by Robert Martin’s book: “Clean Code”
•  Explicit method and variable naming, clean tests (low-level self-testing -  see below)

•  Simplified parallelization using simple extendable interfaces that can be utilized without any user involvement.
•  Tools

•  Program is shared through a python wheel.
•  Installed using pip
•  Dependencies are automatically installed with the program.
•  Optionally can be exported to a .deb or .rpm for Linux systems.

•  Travis Build and Testing system (see below)
•  With each push up to the Github, Travis will download the changes, build the package, and run all the py.tests we 
have written for the package. Upon failure we are notified.
•  Package is tested against Python 2.7, and 3.3-latest

•  Documentation
•  Documentation written in restructured text, rendered using sphinx, and uploaded to Readthedocs.io
•  Little inline documentation, instead relying on clear and clean design with explicit naming to explain the function 
•   of the object or method.
•  Documentation instead being written at the top of important files with a lot of functionality.
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•  User interaction.
•  Plugins, Main, and General settings are all configured in a Yaml File.

•  Simple way to generate the yml file automatically, with as few or as many options to tweak as the user would like.
•  All interactions with the program are through the command line.
•  Full logging support, with multiple tears of logging, from just warnings to full debug support.

In Progress.
•  The addition of a graphical and text interface.
•  The ability to store live point data from Nestle of the fitting process from the Minimizer’s perspective.
•  Packaging into a Mac OS X Bundle, Debian .deb, and Redhat .rpm complete with all dependencies.
•  Complete documentation of the design and internals of the program for future developers.
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-~80% test coverage, meaning 80% of the lines of code are covered 
under low-level unit testing.

simple logical consistence - numerical ascertain
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The PyPWA framework and toolkit is divided in 

GENERAL-SHELL (PyFit,PySim)

● Fitting and Simulation.
● User can input any model.
● Interface is through user defined
Python scripts using templates.
● Integrated batch farm interface.
● Multithreaded.
● Simulation produces “masks” to be
 used on user formatted MC.

ISOBAR

● Fitting and Simulation.
● Exclusively uses the isobar amplitude
model and photo-production (linear pol)
● Easy install and mass binning.
● Takes advantage of the GAMP1 event
format (4-momenta) and the GAMP
amplitude generator utilizing “keyfiles” 
for physics descriptions.
● Optional use of “Q factor” - quality 
● Interface is with GUIs
● Interacts directly and exclusively with
the JLab batch farm
● Integrated plotting through Python

software structure

1 Cummings and Weygand (PWA2000)
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General Shell
PyFit - PySim

The General shell side of PyPWA is focused on openness and generality.

The General Shell uses code inputs from the user, but can fit any model to
the data by a userʼs choice of:

Un-binned standard Likelihood method.
Un-binned Extended Likelihood method.
Binned Likelihood method.
Least-squares

Minimization (Default): Minuit or Nestle
many others are easily available from scipy.optimize

for example

software structure
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For both fitting and simulation there is one file that the user 
interacts (configuration file) and one the model is provided.

The model can be provided in FORTRAN/C++/Python/Jave into
a python shell provided by PyPWA

Simulation and fitting take text files of variables in a general txt 
format:

X1=0.25, X2=1.67, X3=90.5 ...

simulation starts normally with already simulated phase space and 
produces two “masks” to be applied to those events
- production mask
- acceptance mask

according to the model (by rejection sapling)

some specifics of the  general-shell

Wednesday, March 29, 2017



Carlos Salgado          CLAS HWG      March, 2017 12

This is an example of the sort of function you can fit 
This is the intFn() function inside Fn.py and it's arguments are 
the two keyed dictionaries, kVars and params. Kvars are the 
variables parsed from the text file, while params are the parameters 
fitted by Nestle.

Example

def setup_function():
    AMP.dummy()
    pass
    
def prior_function(x):
    y = numpy.array([10.E+12*x[0], 25*x[1]-15]
    return y

(using Nestle as minimizer)
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Builtin Parser:
  enable cache: true
Builtin Multiprocessing:
  number of processes: 8
Nestle:
  ndim: 5
  prior name: prior_function
  prior location: Fn.py
  npoints: 2500
  method: multi
General Fitting: 
  function's location: Fn.py
  save name: output
  setup name: setup_function
  processing name: intFn
  data location: /volatile/data.txt
  likelihood type: loglike

For a fit the you run

>Py Fit -wc

and the run

it produces a configuration file 

>PyFit conf.file

Wednesday, March 29, 2017
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We will find the best parameters −→a for our model, maximizing the extended
likelihood or equivalently minimizing the function −lnL .
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We will describe in section 6 details of how we will calculate and solve this
minimization problem.

The errors in the parameters are given by the square root of the variances. Let’s
call a∗i the fitted parameters, i.e. the values that make the function (13) a minimum
and find an expression for the errors [28, 20]. The variances are:
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where βai ≡ (ai − a∗i ) and:
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Extended likelihood

PWA - Isobar (Partial Wave Analysis) Formalism
Salgado&Weygand: Phys.Rep, vol 537/1, pages 1-58 (2014): arXi v:131arXiv:1310.7498.
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The other convenience of using the reflectivity basis is that reduces by two the
rank of the of the production density matrix. Then,

�ρb,b� =
�

k

�V k
b �ργ�V k∗

b� (146)

therefore

I(τ) =
�

�

�

b,b�

�Ab(τ)
� �ρb,b�

�A∗
b�(τ) (147)

or

I(τ) =
�

k�

�

b,b�

�Ab(τ)
� �V k

b �ργ�V k∗
b�

�A∗
b�(τ) (148)

or

I(τ) =
�

k

�

b,b�

[+ρb,b�
+Ab(τ)

+
A∗

b�(τ) +
−ρb,b�

−Ab(τ)
−
A∗

b�(τ)] (149)

The sum involves non-interfering terms of the reflectivities amplitudes. The
absence of the interfering term of different reflectivities is a direct consequence of
parity conservation.

We now can show how the Wigner functions, DJ
mm�(α,β, γ), are affected by the

reflectivity operator, i.e. how can we write those operators on the reflectivity basis?
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The Spin Density Matrix of the incoming Photon is calculated
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This is the function to be minimized choosing the best values of �V k

b . To find
the ”true” or predicted number events in the ∆M∆t bin, that we will call Ntrue,
we use that:
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In cases were our model include different amplitudes (i.e. the Deck effect, Baryon
contaminations,...) the factorization used in (247) is not possible. The accepted
and raw normalization integrals can not be calculated independent of the likelihood.
This has a very important effect, practically, in the time expended in the analysis.
The use of GPUs or other computing advances could greatly improve this aspect
of the fitting process since we nee now to include directly equation (245) into the
likelihood.

We can use produce many ”predicted” distributions of data properties (i.e., an-
gular distributions, t-distributions,...) to cmapare with data. This comparisons
allow to verified the accurance of the fit (see section 7). To make the predictions we
use the predicted value of I(τ ; �V k

b ) to ”weight” the generated (raw), phase-space,
distributions.

7 Checking our fits

Let’s consider three statistical problems associated with our analysis: 1) is the fit
of our model to the data appropriated ? (goodness-of-fit), 2) how our model (wave
set) compare with other models (other wave sets)? (hypothesis-tests) and 3) what
is the best way of fitting the model to the data? (estimation) [20].

We start discussing the third point first. We use the extended likelihood method.
We chose this function as the estimator. An estimator should have four desir-
able properties: consistency, unbiasedness, efficiency and robustness. Consistency is
when the estimator must converge to the true value as the number of observations
increases (mathematically in the infinite limit), is the most important of all. An

40

Unbinned Maximum Likelihood fit

Wednesday, March 29, 2017

http://arxiv.org/abs/1310.7498
http://arxiv.org/abs/1310.7498
http://arxiv.org/abs/1310.7498
http://arxiv.org/abs/1310.7498


Carlos Salgado          CLAS HWG      March, 2017 15

ISOBAR - PWA

The Isobar framework is focused on ease use
and speed. So from the install process until
plotting almost everything is automated.

Install is handled by a single program which
opens the control GUI, creates the needed
directory structure, moves files to their correct
location, and does the mass binning, which can
take awhile if the user has many events.

The control GUI at right is the first point of
contact the user has with PyPWA and the
information filled into it will be used throughout
the fitting and simulating process.

GUI (draft)
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ISOBAR cont.

The Isobar framework's main point of contact for the
user is the PWA_GUI at right. The left column is what
appears when the program is run and the right is what
appears after the FITTING button is pressed.

Each button on the right represents a different step in
the fitting process and runs a different program. Each
of these buttons will run the program which creates
and submits many jsub files directly to Auger.

This GUI also has access to the control, the plotter,
and the Waves utility.

GUI (draft)
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Plotting

Plotting in PyPWA Isobar is handled by the above GUI which uses the 
MatPlotLib Python library for all plotting.
This program also consolidates all data for plotting into single file named in 
the control. This file can be loaded in the future and multiple files can be 
saved and loaded at different times.

GUI (draft)
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GUI (draft)
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Improve 
Amplitude 
Analysis

Hardware
(parallel processing)

Statistical Methods Software

Theory
(constrain fits)
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MODEL SELECTION
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A Bayesian Approach
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(CLAS members
Dave I, Derek G.)
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Methods to improve on prior

1.Laplace Aprox. (Gaussians)
2.Inportance Sampling
3.Anneled importance
4.Variational Bayes
5.Hamilton Aprox.
6.Nested Sampling

To evaluate evidence from a flat prior is very expensive (time)
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MODEL SELECTION A Bayesian Approach

Nested Sampling 
Skilling J., 2004, in Fischer R., Preuss R., Toussaint U. V., eds, 
American Institute of Physics Conference 
Series Nested Sampling. pp 395–405

Z(Evidence) = prob
�
D|I

�
=

�
L(x)π(x)dx

BOOK: Data Analysis;A  Bayesian Tutorial; Sivia and Skilling. 

•  Parameter estimation (Max. Like.)
•  Model Selection (Evidence)
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http://kbarbary.github.io/nestle/index.html

Python code implementation by K. Barbary (Berkeley Institute for Data Analysis)

Classical example of 
multiple maxima: Eggbox

Nestle         (python from Multinest - Nested Sampling)
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other types of “Model Selection”: Penalize 
Likelihood (i.e LASSO)
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How to quantify bias?
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Intel-Xeon-Phi cards using for example OpenMP . Xeon Phi’s contain  about 
61 of x86 cores that are functionally identical to those of standard laptops and 
desktops. There are just many more of them running at a lower clock speed to 
fit into a reasonable thermal design envelope (currently a PCI Express card). 
The maximum output is at 1TFlop and they have comparable performance with 
GPGPUs. Writing code for the Xeon Phi is less complicated than writing code 
for GPUs since it will behave as any normal CPU

Knightʼs Landing:
• 64 Silvermont cores
• Socketed and PCI-Express versions available
• Back to homogeneous computing?
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Main point -> -Python multiprocessing affords users the ability to utilize all of the cores on their local machine 
without having to fight with any specialized tools for parallelizing their code
-The Dual Xeon system should be expected to perform better, itʼs more than twice the cost. 
-The fitter scales well considering it is python multiprocessing and it does not compromise on portability.
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https://pypwa.jlab.org
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  Jlab web-page - Tutorials and links
  code:         github JeffersonLab/PyPWA 
Sphinx generated : docs
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Documentation
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● PyPWA, both General and Isobar tools provide a “underneath” software framework  for 
userʼs Amplitude/Partial-Wave analysis.

● Integration directly to the JLab SciComp

● Integration with lower level languages is easy - Any amplitude in mostly any language 
(i.e FORTRAN) can be used directly.

● Python multiprocessing affords users the ability to utilize all of the cores on their local 
machine without having to fight with any specialized tools for parallelizing their code.

● Includes a complete package of PWA (Isobar) in the Isobar model interfaced by GUIs

● ~80% test coverage, meaning 80% of the lines of code are covered under unit testing .

● The code is designed with flexibility in mind, allowing users/us to create plugins for new 
data types, minimizers, and amplitudes.

● Currently we have two different minimizers built in, a package containing several nested 
sampling algorithms (Nestle), and good olʼ Minuit.

● Installation can be accomplished using a simple pip install command for the whole 
package

● utilizes optimized fortran/C++ libraries on the backend by using numpy/scipy/whatever 

Summary
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● Download PyPWA at
 https://github.com/JeffersonLab/PyPWA/

                                            ... is a work in progress.

welcome partners to use all/parts of the infrastructure
 ... and contribute!... just contact us at https:/pypwa.jlab.org
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