DC Calibration Update

Krishna Adhikari (MSU) Mac Mestayer (JLab)

> CLAS12 Workshop 3/28/2017

Drift Chambers for CLAS12 Tracking

- Wire chambers provide economical ways for tracking in large volumes.
- Electrons drift towards wires (at +ve voltage)
- Strike a molecule every 2 μ m
- Velocity ~ 50 μm/ns (max)
- Drift distances (calculated from the measured drift times) can be used to determine the tracks.

Minimize rms between track and calculated distance

Time Corrections

Measured times must be corrected for various delays to get the true drift times.

- DC raw data in the form of TDC digits.
- TDC digits have to be corrected for fixed and event dependent delays.
- Signal cable delay (T0) contributes the most to the fixed delay.

Automated Method for T0s: (1.0/(1+exp(3.90080e+02-4.42973e-01*x))) the rising edge

Rising Edge Fits & TO extraction

Estimated TOs (in ns) vs Cables

Residuals from TBHits bank.

Time-to-distance Calibration

A formula is required to translate drift times into drift distances in order to use in tracking.

Here we determine a reverse formula, and which is used to make translation tables.

Method: Time-to-distance Calibration

- Make time-vs-doca 2D histograms by selecting hits (TBTracks -> TBSegments -> TBHits; nHits>5 in a segment) in bins of sector, superlayer and local angle (α).
- Histograms are then transformed into corresponding X-profiles (essentially graphs with each point representing the y-average inside each X-bin).
- Profiles provide data points for **Chi**square minimization

 $\chi^2 = \sum_{i=1}^{\infty} \left(\frac{t_{calc} - t_{xprof}}{t_{Err}} \right)^2$

t(x,α, B, p1, ..., p9)

• Uses Minuit from FreeHEP java libraries included in Coatjava package.

Time-to-distance Fits

TB-Hits of Segments in one local angle bin α (-10.0,-6.0)

Effect of First T-to-D Iteration

Residuals from TBHits bank.

Effect of First T-to-D Iteration

GUI Driven Calibration Suite

- Automated Determination of T0 corrections Completed.
- A first full pass of reconstruct ->calibrate -> Write-to-CCDB -> reconstruct accomplished.
 - Trying to understand why resolution got worse.
- GUI development is in progress.
 - Fields and buttons to control/constrain fit parameters.
 - First working version of the suite expected in about 2 weeks.

Special Thanks to Veronique Ziegler, Michael Kunkel, Daniel Lersch, Olga Cortes

Back Up Slides

Time-to-distance Fits

TB-Hits of Segments in one local angle bin α (-10.0,-6.0)

Residuals before TO correction

Residuals before first iteration

Effect of new D2T parameters

Residuals after after first iteration

Residuals vs trkDoca before T0 correction

Residuals vs trkDoca before first iteration (after T0 correction)

Effect of new D2T parameters

Residuals vs trkDoca after first iteration

26