HTCC update

CLAS12 software workshop

N. Markov, Y. Sharabian, W.Phelps, D. Riser

Outline

- オ KPP run
- Simulation
- Calibration
- Reconstruction
- Data analysis
- Current results
- **Future steps**

HTCC

In transit

In the Hall

KPP run

- HTCC was functioning during the whole KPP run period;
- All the systems (HV, readout, gas, monitoring) were working properly

GEMC

- Full HTCC geometry
- Measured mirror and Winston cone reflectance

PMTs

- Realistic Quantum Efficiency of the PMT with Quartz Entry Window
- Realistic CO₂ gas transparency
- Realistic CO₂ gas refraction index

Reconstruction: clusters

Cerenkov radiation from single electron may split between mirrors and is collected by different PMTs

Geometrical pattern of single- and multiple hit events:

Data processing

FADC spectrum in time, Mode1

Calculating pulse size and time based on threshold value

Calculating absolute signal strength and coordinate based on the PMT calibration

Calibration

- Gain match with a SPE peak fit function with LED light pulser runs
- Successful HV Gain Match at two gain settings (225 and 400 channels per s.p.e)
- Most Channels matched within ±10%.

Gain Match

Data analysis

No solenoid magnet in front of the HTCC

Two approaches for electron ID:

- DC and EC/PCAL

 - ↗ Limited to sector 2 (8 PMTS)
- - Based on geometrical match between hits in EC/PCAL and HTCC
 - No tracks
 - Can access all 48 PMTs

Run subperiods

- Low lumi: nphe@ 225, inbending, runs 805 806
 - full set used
- Inbending400: nphe@400, runs 753-769
 - ~ 61 files, runs 75*, 76*
- Outbending400: nphe@400, runs 790-797
 - **7** 11 files, runs 792, 795, 796, 797&798
- **Zero field**: nphe@400, run 798
 - one file exists, used
- Inbending225: nphe@225, regular lumi, runs 806-810
 - run 809 used

Procedure

- Electron ID, we select good electrons based on DC and EC information;
- Overall HTCC signal for single hit events: we select good electrons and for them looks at the NPE spectrum for the single hit events;
- HTCC signal by individual mirrors for single hit events: look at the same signal within individual mirrors up to ring 3 (not enough statistics beyond that);
- Geometry and signal strength considerations: is there any dependence of the signal strength on the angular distributions of the electron events;

DC and EC/PCAL: electron id

60

10

18

- E/p > 0.14
- P > 1
- 8> (Theta_DC -٠
- Theta_DC > 10

ш

60

Set of cuts on sampling fraction, particle momentum, vertex position, and angular match between the DC and HTCC are developed.

DC and EC/PCAL: NPE spectrum

DC and EC/PCAL: Summary

Position of a 1 hit peak

Configuration		Overall	R1HS1	R1HS2	Ratio	R2HS1	R2HS2	Ratio		
Low lumi (inbending 225)		13.7	15.0	9.9	1.52	12.6	14.5	0.87		
Outbending400		17.65	19.9	10.6	1.83	14.1	20.7	0.68		Г
Inbending400		15.9	17.8	12.4	1.43	12.6	16.6	0.76	IL	5
Inbending225		15.7	17.0	9.7	1.75	12.7	17.0	0.75		R
Number of <mark>1 hit</mark> events										
Configuration		Overall		R1HS1	R1HS2	R2HS:	R2HS1 R			
	Low lumi	1194	÷ ۲	547	251	182	1	89	I.	101
	Outbending400	0 1463	32 6	5468	3199	1942	1942 2		in n	n n
	Inbending400	777	2	259	132		1	161		n R
	Inbending225	862	3	389	145	118	1	42		

Different gain, same polarity Rather consistent

HS1/HS2 asymmetry in number of events in R1

Full HTCC

- remove DC track requirement
 - not able to use event builder;
- Select runs with 6 sector trigger (runs 753 767, inbending field)
- ↗ Require EC/PCAL hit & HTCC hit
 - **Remove MIP by using PCAL;**
 - Plot all HTCC hits vs PCAL hits;
 - **7** find geometrical matches;
 - cut events based on geometry;
- ↗ Plot NPHE spectrum for each PMT

Electron ID in PCAL

Nphe by PMT

Cluster in EC/PCAL + geom match with PCAL + MIP cut in PCAL Ccluster in EC/PCAL + geom match with PCAL + geom match with EC_IN+ MIP cut in PCAL

~ 20 Nphe on average

Consistent between different methods of electron ID

Sector 4 of EC was off during this part of the run.

Integral Nphe spectrum

1 hit events

Electron ID performed with PCAL provides systematically higher Nphe Second hump in case of PCAL electron ID needs more investigation

HTCC occupancy

Average number of Nphe per event as a function of angle as measured by DC when DC and EC are used to select events

HTCC occupancy

Average number of Nphe per event as a function of angle as measured by PCAL when PCAL is used to select events

Conclusion

- HTCC worked properly during the whole KPP run;
- Data were cooked and analyzed immediately;
- As a part of the KPP run it met the DOE requirements;
- Signals from all 48 PMTs were extracted;
- Average number of Nphe is 19.4 for a single hit events (expected to grow when account for multiple hit events);
- Signals from 8 PMTs of sector 2 were extracted using different ways of electron ID;
- Average number of Nphe is compatible with estimations;
- There are discrepancies between different PMTs in the same ring to understand.