Hadron Physics with Electromagnetic Probes in Hall B

- Gießen Group
- Current Research
 - Physics
 - Instrumentation
- Involvement in CLAS

Kai-Thomas Brinkmann, JLab, Mar 29, 2017

University of Gießen

founded in 1607

- 4,500 employees including:
 - Teaching and research staff: 2,000 (333 professors)
 - Administrative and technical staff: 2,500

Justus Liebig

Heinrich Buff

Wilhelm Conrad Röntgen

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

Walther Bothe

Group

- Dr. M. Nanova, Dr. E. Gutz, Dr. H.-G. Zaunick
- Dr. S. Diehl, Dr. V. Dormenev, Dr. M. Moritz, Dr. T. Quagli
- 7 PhD students
- MSc and BSc students
- Technical staff

- Experiments:
 - **PANDA at FAIR (hardware, simulations)**
 - CBELSA/TAPS, Bonn
 - Eric, Stefan: CLAS 6 analysis

Physics

 Reactions with hadronic probes: pp collisions, meson production

- CBEIsa/TAPS: single and double meson production
- Meson production off nuclei (ω, η΄)

$$\vec{\gamma}\vec{p} \rightarrow p\pi^0$$

Cascading Decays of Excited Baryons: Isobar Analysis (E. Gutz, CLA

$$\gamma p
ightarrow p \pi^0 \pi^0$$

V. Sokhoyan, E.G., V. Credé, H. van Pee *et al.*, Eur. Phys. J. A **51** (2015) 51

- $\Delta(1232)\frac{3}{2}^{+}\pi^{0}$
- ► $N(1520)\frac{3}{2}^{-}\pi^{0}$
- $N(1680)\frac{5}{2}^2\pi^0$
- ▶ also seen: $N(1440)\frac{1}{2}^+\pi^0$, $f_0(980)p$, ...

Cascading Decays of Excited Baryons: Isobar Analysis (E. Gutz, CLAS

(E. Gutz, CLAS meeting 10/2015)

- Check feasibility of approach with g11-/g12-run data in $\gamma p \rightarrow p \pi^+ \pi^-$
- Check high-mass (scalar) meson isobars also in KK-decays
- Extension of analysis program to hyperon spectrum
- Extension of the approach to polarization observables possible

Analysis E. Gutz, S. Diehl

(@ Analysis M. Nanova CBElsa)

Cascading Decays of Excited Baryons

(M. Nanova, 2017)

$\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^0 \eta$: Dalitz plots

 $N^*, \Delta^* \rightarrow N(1535)\pi^0 \rightarrow N\pi^0\eta;$

Δ*→<mark>Δ(1232)</mark>η→Νπ⁰η;

$\gamma p \rightarrow p \pi^0 \eta$: Dalitz plots

N*,Δ*→N a₀(980)→ Nπ⁰η

Cascading Decays of Excited Baryons

(S. Diehl, 2017)

 $\gamma p \rightarrow p \pi^+ \pi^-$

Δ⁺⁺(1232)
 Δ(1600)
 N(1520)
 Δ(1232)

B** → B* π± → p π+ π⁻

S. Diehl, CLAS6 data, '17

- 1. Event wise acceptance correction
- 2. Split the data in 20 MeV wide energy bins and do every analysis step for each of the 40 energy bins
- 3. Projection of resonance 1 ($\Delta^{++}(1232)$) to x-axis (M²($p\pi$ ⁺)) and 2,3 and 4 (Δ , N) to y-axis (M²($p\pi$ ⁻))

S. Diehl, CLAS6 data, '17

Excitation Functions

S. Diehl, CLAS6 data, '17

Excitation Functions

Instrumentation

- Device Physics
- Charged Particle Tracking / Si Sensors
- Electromagnetic Calorimetry

Applications in PANDA, Medical Physics, Space Flight

Mar 29, 2017

PANDA

University of Applied Sciences

Helmholtz International Center

Mar 29, 2017

UNIVERSITÀ DEGLI STUDI DI TORINO

LMA UNIVERSITAS

INFN

UNIVERSITÄT

GIESSEN

PANDA

Future Involvement

 Continued analysis of CLAS6 data (Eric, Stefan)

II. Physikalisches

Institut

Participation in preparations and running

CLAS12 (Eric, Stefan, PhD student)

 $\frac{e \ p \ \rightarrow e \ p \ \pi^{0}}{e \ p \ \rightarrow e \ p \ \pi^{+} \pi^{-}}$ sim w/t Genova (S. Diehl, talk Thursday) $\overset{M_{\pi^{0}} \text{ in FT cut}}{\overset{M_{\pi^{0}} \text{ in FT cut}}{}}$

• Hardware/services

Possibly contributions
 in forward tagger

University of Gießen

founded in 1607

Justus Liebig

Future Involvement

 Continued analysis of CLAS6 data (Eric, Stefan)

II. Physikalisches

Institut

Participation in preparations and running

CLAS12 (Eric, Stefan, PhD student)

 $\frac{e \ p \ \rightarrow e \ p \ \pi^{0}}{e \ p \ \rightarrow e \ p \ \pi^{+} \pi^{-}}$ sim w/t Genova (S. Diehl, talk Thursday) $\overset{M_{\pi^{0}} \text{ in FT cut}}{\overset{M_{\pi^{0}} \text{ in FT cut}}{}}$

• Hardware/services

Possibly contributions
 in forward tagger

KTB

Bending at top

Technical Design Report for the:

PANDA Micro Vertex Detector

Strong Interaction Studies with Antiprotons

FANDA Collaboration

Hardware: double-sided Si strip sensors, PANDA grade

PANDA wafer CiS Erfurt

Radiation damage test

Probe station characterization

Hardware: development of a non-triggered Frontend readout chip (PASTA)

First prototype under study (MPW run in 2015)

Features:

- 64 channels
- Time over threshold
- Small power consumption

First prototype operational, beam tests in 5/17 Re-submission Final design planned in ~ 2 years Module controller chip developed in parallel

Torino, Gießen, Jülich, Iserlohn

Si Lab Facilities

Hardware

Cleanroom facility (ISO class 6)

Workshop: Specialized equipment in-house, customized, on short notice

- Bonding tools
- Mounting tools

Semi-automatic wedge wire bonder

Automatic prober

Hardware

1060 nm laser test stand operational

6

x (µm)

Charge Distribution $\sigma = 3.3 \,\mu m$

Mar 29, 2017

Hardware

Tracking station:

Si strip sensors, 4 layers

- Handling
- Sensor tests
- Tracking development (soft/hard)
- Infrastructure

Mar 29, 2017

Measurements

CERN, COSY, DESY, ELSA:

- Pixel tracking station triggerless readout
- Synchronisation with the strip telescope @50 MHz
- 10 GeV/c pions, pixel + strips: residuals $\sigma_{x,v} = 18 \mu m$

p, ToPix pixel array

The **PANDA EMC**

Next Step: PANDA Barrel Slice

Mar 29, 2017

The PANDA EMC

The PANDA EMC

PANDA EMC: Stimulated Recovery of Rad Damage

Prototype Setup for the FEC

- Stable operation at -25°C
- Monitoring with light pulser
- Precision control of laser diode flux
- Estimated maximum dose rate 2 ·10⁻⁶ Gy/s
- Leads to production of 10¹² populated traps/s
- Minimum flux for recovery 10¹³ ph/s

The PANDA EMC

- ~ 15,000 PWO-II crystals
- 22 X₀ (2 cm x 2 cm x 20 cm)
- Readout by 2 Large Area APD
- Self-triggered data acquisition

Mar 29, 2017

PANDA EMC

- Prototyping of stimulated recovery of PWO crystals
 - => standard procedure
- Hadron rad damage studies
- Light-yield uniformity studies
- Rad hardness of laAPDs
 - => standard procedure under development
- Barrel prototype PROTO 120, many procedures and components standardized

Co-60 irradiation, JLU

Proto analysis

PROTO120@MAMI

