CLASI2 First Experiment workshop March 28 2017 The CLASI2 Forward Tagger

M.Battaglieri, R.DeVita, A.Bersani, A.Celentano, R.Cereseto, E.Fanchini, S.Fegan, M.Osipenko, G.Ottonello, F.Parodi, R.Puppo, A.Trovato, V.Vigo INFN-GE

> G.Smith, D.Watts, P.Black, S.Hughes, J.Fleming, N.Zachariou University of Edinburgh

D.Attie, S.Aune, J.Ball, G.Charle, M.Defurne, M.Garcon, I.Mandjavidze, S.Procureur, M.Riallot, F.Sabatie, M.Vandenbroucke CEA-Saclay

> A.D'Angelo, A.Ciarma, L.Lanza INFN-RMTV

> > A.Filippi INFN-TO

M.Anderson, D.Glazier, D.Ireland, K.Livingston, D.Sokhan University of Glasgow

> K.Hicks, M.Camp, N.Klco Ohio University

> > C.Salgado, M.Lee Norfolk University

K.Giovanetti, H.Mann, I.Davenport, M.Yates James Madison University

N.Baltzell, S.Boiarinov, P.Bonneau, P.Campero, A,Hoebel, G.Jacobs, T.Lemon, B.Miller, E.Pasyuk, B.Raydo, S.Stepanyan, M.Ungaro, A.Yegnesvaran ILab

... et (many) al.

Quark and gluon confinement: hybrids and exotics

We propose to study the light meson spectrum in a photoproduction experiment using CLAS12 ★ Meson provide an easier access to inter-quark potential, strong interaction dynamics, and gluonic degrees of freedom
 ★ Photoproduction should be favorable to excite exotic quantum number and photon polarisation helps in extract the information suppressing the bg

JLab PAC41 granted A⁻ to MesonEx proposal

Requirements:

 \star Large acceptance detector:

CLASI2

 \star Intense, tagged, polarized photon beam in the energy range 5-10 GeV

CLASI2 Forward-Tagger

Quasi-real photoproduction with CLASI2 (Low Q² electron scattering)

$E_{scattered}$	0.5 - 4.5 GeV
θ	$2.5^{o} - 4.5^{o}$
ϕ	0° - 360°
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 (\langle Q^2 \rangle 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

★ Electron scattering at "0" degrees (2.5^O - 4.5^O) low Q² virtual photon \Leftrightarrow real photon

★ Photon tagged by detecting the scattered electron at low angles High energy photons $6.5 < E_g < 10.5$ GeV

 \star Quasi-real photons are linearly polarized

Polarization ~ 70% - 10% (measured event-by-event)

★ High Luminosity (unique opportunity to run thin gas target!) Equivalent photon flux $N_v \sim 5 \ 10^8$ on 5cm H₂ (L=10³⁵ cm⁻²s⁻¹)

 \star Multiparticle hadronic states detected in CLASI2

High resolution and excellent PID (kaon identification)

High energy low Q2 photon beam in CLASI2!

The Forward Tagger for CLASI2

FT-Cal: PbWO₄ calorimeter

electron energy/momentum Photon energy (v=E-E') Polarization $\varepsilon^{-1} \approx I + v^2/2EE'$ INFN-GE, INFN-RM2, INFN-TO

FT-Hodo: Scintillator tiles

veto for photons
EdinburghU+JMU+NSU

FT-Trck: MicroMegas detectors

electron angles and polarization plane Saclay + OhioU

FT-Cal

Calorimeter + hodoscope + tracker

Electron energy/momentum $\delta v / v = \delta E' / (E-E')$ Photon energy (v=E-E') Polarization $\epsilon^{-1} \sim 1 + v^2 / 2EE'$

Requirements

* Radiation hard

* Good light yield

* Energy resolution

* Time resolution

* Light read-out (APD/SiPM)

FT-Cal Specs

* Crystals: 332 I5xI5x200 mm3 BTCP/SICCAS PbWO4 Type II

- * Light sensors: Hamamatsu LAAPD s8664-1010
- * FE electronics: FT-Orsay preamps
- * Working temperature: 0 °C, +18 °C
- * Energy range: 5 MeV (Threshold on single crystal) to 8 GeV
- * Energy resolution: $2.3\%/\sqrt{E(GeV)} \oplus 0.5\%$

FT-Hodo

Calorimeter + hodoscope + tracker

veto for photons

Requirements

* Good timing (<ns) for MIPs

- * High segmentation
- * 100% efficient for charged particles

Plastic scintillators tiles with WLS fibres coupled to SiPM

FT-Hodo Specs

* Segmented array, 2 layers of tiles to minimize photons misid
* Tiles: 74 30x30x15 mm2 + 42 15x15x7 mm3 ElJen 204 per layer

* WLS: (4x74 + 2x42)x2 = 380 d=1mm Kuraray K11

* Light sensors: Hamatsu S10362-33-100 3x3mm2, 100um SiPM

- * FE electronics: 232 channels FTh-Orsay preamps
- * Time resolution: < I ns

6

FT-Trck

Calorimeter + hodoscope + tracker Q²= 4 E E' sin² 9/2 Scattering plane

Requirements

* High pixel density (FW)
* 100-300 µm resolution
* Integrated in the CLASI2
base equipment

Sustain high rate, moderate resolution, low material budget: Micromegas

FT-Trck Specs

- * Two double layers of bi-face bulk Micromegas
- * Pitch: 500 μm
- * FE electronics: 3392 channels, same FE used for MCT
- * Services and slow controls shared with MCT
- * Spatial resolution: < 150 μ m

Expected angular resolution of FT-Trck Exploiting the solenoid kick a single tracker close to the FT suffices

FT project timeline

- 2011: MesonEx proposal presented to JLab PAC41 and approved
- 2011/12 Design and components R&D: crystals, APDs, plastic scintillators, sipm sensors and FE electronics, micromegas
- 2012 JLab review with 3 detectors layout (FT-Cal, FT-Hodo and FT-Trck)
- 2012/13 FT-Cal + FT Hodo prototype tested on e-beam at JLab and LNF, FT-Trck tested in Saclay
- 2014 Components procurement and test: PbWO crystals, LAAPD, SIPM, FE electronics, scintillator tiles, optical and WLS fibers WLS
- 2014 Ancillary systems design and procurement: LED monitoring system, mother boards
- 2015 FT subsystems assembled in Genova, Edinburgh and Saclay and tested with cosmic rays
- 2015/16 FT deployment to JLab (EEL), FT-Cal+FT-Hodo+FT-Trck assembly
- 2016 FT EER
- 2016 Commissioning with cosmic rays

FT current status

FT-Cal

FT-Hodo

JLab EEL building • FT-Cal, FT-Hodo and FT-Trck assembled at JLab, cabled and connected to DAQ, taking cosmic data

• FT-Cal + FT-Hodo implemented in the same DAQ configuration and taking cosmic data in vertical position

FT-Cal assembly and commissioning in Genova

LED (top) copper plate

10

FT-Cal assembly at JLab

preamps and MoBo

Assembly hall at JLab (EEL)

Ш

eelab12

CLAS12 Forward Tagger FT

FT-Hodo assembly and commissioning (Edinburgh)

Scintillator painting & assembly

12

Low Dust and UV tent

FT-Hodo assembly and commissioning (JLab)

<u>e @lab12</u>

CLASI2 Forward Tagger FT

FT-Trck assembly and commissioning (Saclay)

CLASI2 Forward Tagger FT

FT-Trck assembly and commissioning (JLab)

cea

- FT-Trck deployed at JLab in Dec 2105
- RO electronics and gas system ready
- Cosmic tests showed issues
- New detector (spare) manufactured at CERN and assembled at Saclay
- FT-Trck deployed at JLab in June

Forward Tagger Tracker – A few pictures & results

Forward Tagger Tracker Status Report

02/25/2016

CLASI2 Forward Tagger FT

Installation procedure sketched with Hall-B engineering team

FT installation and integration in CLASI2

FT support pipe load tests • nominal FT configuration

• shielded FT configuration

FT cables and service routingElectronics position defined

Hod

Tracker cooling outlets

G_20161108_162747794.jpg

FT in GEMC

<u>e (ab 12</u>

18

FT simulations

Simulations:

Geometry

- correct z position
- correct FT-cal insulation and FT-Trk crates position
- Full FT-Hodo geometry (Edinburgh+Genova)
- Full FT-Trk geometry (M. Garcon)

FT hitprocess

- Digitization based on calibration constants read from CCDB
- FT-Cal and FT-Hodo tuned to match cosmic ray calibration data
- FT-Trk update in progress (M. Defurne)

19

FT reconstruction

Reconstruction

FT-Cal:

- Read raw hits from hipo bank
- Read calibration constants from DB
- Create hits, converting from digitized info to E and T
- Reconstruct cluster and determining cluster E, T and pos

FT-Hodo:

- Read raw hit from evio bank
- Read calibration constants from DB
- Create hits, converting from digitized info to E and T
- Match hits in the hodoscope layers

FT-Track:

• started based on algorithm developed by G. Charles

FT-Match:

- Match reconstructed clusters with hits in hodoscope
- Output of final reconstructed particles

Code available in present COATJAVA distribution

FT Commisioning w/o beam

Calorimeter:

- Noise measurement to test individual channel functionality
- Response to LED signals
- Cosmic ray energy calibration

Hodoscope:

- Noise measurement to test individual channel functionality
- Cosmic ray energy calibration

Tracker:

<u>e () lab12</u>

- Pedestal/noise measurement and FEE diagnostic runs

20

CLASI2 Forward Tagger FT

FT Calibration Challenge results

FT participated into Dec16 Calibration Challenge to test the effectiveness of the calibration procedures using MC data with background

Tested procedures include:

- FT-Cal timing calibration (E.Fanchini)
- FT-Hodo energy calibration (G.Smith)

Successful results for both sub-detectors at first iteration:

- FT timing resolution after calibration consistent within simulated value
- FT-Hodo charge2energy constants consistent with simulated ones with small systematics (3%) due the Landau parameterization

Schedule of remaining tasks

FT final assembly and test in the EEL building

- FT-Cal sealing
- FT-Cal + FT-Hodo ready for cosmic checkout
- Interlocks + Gas system tested in EEL building
- FT-Trck integration (interlocks + gas system)
- FT final check with cosmic

May

June

FT detector ready to be installed in CLASI2

FT installation in CLASI2

- Move the electronics to the Hall
- Move the FT to the Hall and integrate in CLASI2
- Take cosmic data to check the final configuration

FT detector ready to take data

JLab Hall-B July August/ September