Measurement of polarization observables for the ∧ hyperon for photon energies up to 5.45 GeV.

Shankar Adhikari Florida International University

Motivation

- For baryon spectroscopy, Constituent Quark Model is the currently accepted model in the non-pQCD regime.
- Missing baryon problem predicted resonance are not conclusively observed.
- Missing resonances exist, may not be coupled with Nπ, where most of the world data available.
- Why $K + \Lambda$:
 - Self-analyzing ∧ decay allow to measure single and double polarization observables; which helps to understand production mechanism.
 - Observed N* , already been verified coupled with K+ Λ .
 - N(1710), N(1650), N(1875), N(1900) ...
 - Λ Isospin I = $\frac{1}{2}$, tells us it only couple with N* not with Δ^* .

Polarization observables

General form of cross section including polarization observables:

$$\begin{aligned} d\sigma &= \frac{1}{2} \left(d\sigma_0 + \hat{\Sigma} [-P_L^{\gamma} \cos(2\phi_{\gamma})] + \hat{T} [P_y^T] + \hat{P} [P_{y'}^R] \\ &+ \hat{E} [-P_e^{\gamma} P_z^T] + \hat{G} [P_L^{\gamma} P_z^T \sin(2\phi_{\gamma})] + \hat{F} [P_e^{\gamma} P_x^T] + \hat{H} [P_L^{\gamma} P_x^T \sin(2\phi_{\gamma})] \\ &+ \hat{C}_{x'} [P_e^{\gamma} P_{x'}^R] + \hat{C}_{z'} [P_e^{\gamma} P_{z'}^R] + \hat{O}_{x'} [P_L^{\gamma} P_{x'}^R \sin(2\phi_{\gamma})] + \hat{O}_{z'} [P_L^{\gamma} P_{z'}^R \sin(2\phi_{\gamma})] \\ &+ \hat{L}_{x'} [P_z^T P_{x'}^R] + \hat{L}_{z'} [P_z^T P_{z'}^R] + \hat{T}_{x'} [P_x^T P_{x'}^R] + \hat{T}_{z'} [P_x^T P_{z'}^R] \right). \end{aligned}$$

Total 16 observables.
3 single polarization observables.

4 double polarization observables.

- Polarization observables are sensitive to interference from different states.
- With this experiment we are measuring 3 polarization observables.

	ól II	Required Polarization			
	Observable	Beam	Target	Hyperon	
Single Polarization					
	$\frac{d\sigma}{d\Omega}$	-	-	-	
	Σ	linear	-	-	
	T	-	along y'	-	
	P	-	-	along y'	
	Beam and Target Polarization				
	G	linear	along z	-	
	H	linear	along x	-	
	E	circular	along z	-	
	F	$\operatorname{circular}$	along x	-	
	Beam and Hyperon Polarization				
٢	$O_{x'}$	linear	-	along x'	
	$O_{z'}$	linear	-	along z'	
	$C_{x'}$	circular	-	along x'	
1	$C_{z'}$	circular	-	along z'	
	Target and Hyperon Polarization				
	$T_{x'}$	-	along x	along x'	
	$T_{z'}$	-	along x	along z'	
	$L_{x'}$	-	along z	along x'	
	$L_{z'}$	-	along z	along z'	

Kinematic Coverage

- Pre-existing data for $\gamma + p \to K^+ + \Lambda$ on polarization observables and cross sections from CLAS(JLab), LEPS, SAPHIR, GRAAL.
- Kinematic coverage:
 - CM energy up to 2.6 GeV.
- Able to extract polarization observables w > 2.6 GeV, where previous measurements are missing.
- Higher energies measurement helps us to constrain non-resonant contribution.

g12 Experiment and Analysis Reaction

- Circularly polarized photon beam.
- Photon beam energy range 1.1 to 5.5 GeV.
- 40 cm long unpolarized hydrogen target.
- Large amount of meson photoproduction data were collected.

$$\begin{array}{c} \gamma p \rightarrow K^{+} \Lambda & p \pi^{-} \\ \text{Examples of Feynman diagram} \end{array}$$

s – channel

t – channel

Event Selection

By considering the charge decay mode of Λ to pπ⁻, we can access K⁺Λ the final state.

- We are using two sets of analysis
 to understand our systematics(because
 of low π⁻ detection efficiency) of CLAS.
 - K⁺pπ⁻ (3track)
 - K⁺p(π⁻) (2track)

Event Selection: K⁺p^{T-} (3track) Topology

Applied standard timing and vertex cuts.
Applied g12 standard fiducial cuts.
Knock out bad tof paddles.
Kinematic Fitting 10^7 10^7 10^6 10^6 10^6 10^6

10⁴

0

level cut.

➔ Use 1% confidence

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Confidence Level

➔ Total lambda events 745391

Event Selection: K⁺p(π⁻) (2track) Topology

→ Cuts: Basic cuts defined on the previous slide.

Defining $C_{x'}$, C_z and P

$$\rho_{\Lambda} \frac{d\sigma}{d\Omega_{K^+}} = \frac{d\sigma}{d\Omega_{K^+}} \Big|_{unpol} \{ 1 + \sigma_y P + P_{beam} (C_x \sigma_x + C_x \sigma_x) \}$$

$$ho_\Lambda = \left(1 + ec{\sigma}.ec{P_\Lambda}
ight)$$
 Density matrix.

Defining C_X, C_Z and P

 $P_{\Lambda_X} = P_{beam}C_X$; transferred polarization along x.

 $P_{\Lambda_Y} = P$; induced polarization along y. $P_{\Lambda_Z} = P_{beam}C_Z$; transferred polarization along z.

Measurement of Polarization

- If the produced particle is polarized then, we can extract polarization observables from its decay particles.
- It is possible when there is weak decay of polarized particle such as Lambda.

Observables extraction Methods

1d fit method

$$Asymm = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{\circ} C_{x/z} \cos\Theta_{x/z}$$

2d fit method

$$Asymm = \frac{N^+ - N^-}{N^+ + N^-} = \alpha P_{\circ} C_x \cos\Theta_x + \alpha P_{\circ} C_z \cos\Theta_z$$

- Maximum likelihood method
 - Event by event basis.
 - Reduce the bias comes from acceptance because of event wise analysis.

 $L(C_i) = \prod_{i=1}^n f(Cos\Theta_i, C_i)$ - Minimize negative log likelihood to fit the data;

$$\ell = -\sum_{i=1}^{n} \log f(Cos\Theta_i, C_i)$$

Comparision between different methods

➔ Show good agreement. Later showing results only for Maximum likelihood method.

Comparision with g1c: C_x

Comparision with $g1c: C_x$

Comparision with $g1c: C_z$

Comparision with g1c: C_z

Further investigation: Mass distribution

Energy dependent mass distribution for K⁺pπ⁻ vs K⁺p(π⁻)

Binning: K⁺pπ⁻ w[1.75, 2.4) = 16 w[2.4,3.3] = 8 K⁺p(π⁻) w[1.75, 2.4) = 26 w[2.4,3.3] = 8

Missing mass of kaon.

Energy dependent mass distribution for K⁺pπ⁻ vs K⁺p(π⁻)

Energy dependent mass distribution for K⁺pπ⁻ vs K⁺p(π⁻)

Conclusion and Outlook

- Measured Lamba polarization observables C_x and C_z using g12 dataset for 1.75 < w < 3.3 GeV.
 - 3 method: 1d/2d/ML methods, all showing consistent results.
 - 2 topologies analyzed: results are mostly self-consistent.
- Preliminary C_x/C_z results:
 - Statistical uncertainty are much smaller than previous g1c results for w < 2.6 GeV.
 - In the good agreement with earlier CLAS results.
 - First time measurement for w > 2.6 GeV.
 - Can be used to constrain non-resonant(t-channel) contribution.
- Future work:
 - Induced polarization measurement.
 - Background contamination and systematic uncertainties.

Thank You!

Comparision: g12 with g1c

Analysis 2 topology: K⁺pπ⁻ (3track) K⁺p(π⁻) (2track) Kinematic coverage: 1.75 < w < 3.3 GeV.

Timing and Vertex Cuts

 Vertex selection occupied cylindrical volume around target with -120 to -60 cm along beam and 7 cm radius. • 1 ns agreement between time measured by RF corrected tagger and start counter.

Fiducial cut

Fiducial meaning Trustworthy

• Based on CLAS detector geometry.

• Removing the events those lie on non-uniform region; such as between the sector.

