Determination of the Polarization Observables C_x , C_z , and P for $\vec{\gamma} d \rightarrow K^0 \vec{\Lambda}(p)$ From g13a Data CLAS Meeting March 2017

Colin Gleason

University of South Carolina

March 29, 2017

Work supported by NSF PHY-125782

Overview

- Motivation for studying $K^0\Lambda$ photoproduction.
- Identification of the reaction of $\vec{\gamma}d \to K^0 \vec{\Lambda}(p) \to p \pi^+ \pi^- \pi^-(p)$
- Background subtraction and observable calculation.
- Preliminary results
 - Comparison with current Bonn-Gatchina projections
 - Comparison with $K^+\Lambda$
 - Dependence on neutron virtuality
- Summary

(日) (同) (三) (三)

Motivation: Nucleon Spectroscopy

g13 run group aims to provide a nearly complete experiment on $K^0\Lambda$ photoproduction off the bound neutron $(\frac{d\sigma}{d\Omega}, P, \Sigma, C_x, C_z, O_x, O_z, T)$.

- Majority of strangeness data are from experiments involving a free proton target.
 - $\gamma p \rightarrow K^+ \Lambda$ moving $N(1900)^{\frac{3}{2}^+}$ from $\star\star$ to $\star\star\star$, $N(1710)^{\frac{1}{2}^+}$ from $\star\star\star$ to $\star\star\star\star$
 - $\gamma n \to K^0 \Lambda$ sensitive to $\star N(2120)\frac{3}{2}^-$ and $\star \star \star N(1875)\frac{3}{2}^-$
- Recent paper from N. Compton et al. on $\frac{d\sigma}{d\Omega}$ of $\gamma(n) \to K^0 \Lambda$ has 2 PWA solutions from Bonn–Gatchina.
 - A new fit with polarization observables in this channel could have an impact on the fits.
- How do data off the free proton and the bound neutron compare to each other?

 $\gamma d
ightarrow K^0 \Lambda(p)$

Topology of interest: $\gamma d \rightarrow K^0 \Lambda(p) \rightarrow \pi^+ \pi^- p \pi^-(p)$

• Particles identified based off their β and momentum

β vs. Momentum

イロト 不得下 イヨト イヨト 二日

 $\gamma d
ightarrow K^0 \Lambda(p)$

Topology of interest:
$$\gamma d \rightarrow K^0 \Lambda(p) \rightarrow \pi^+ \pi^- p \pi^-(p)$$

• Particles identified based off their β and momentum

• Quasi-free events selected with $p_n < 0.2 \text{ GeV}/c$

イロン イヨン イヨン イヨン

Identification of K^0 and Λ : $M(\pi^+\pi^-)$ and $M(p\pi^-)$

•
$$M(\pi^+\pi^-) = \sqrt{(\tilde{p}_{\pi^+} + \tilde{p}_{\pi^-})^2}$$

• Fit peak with Gaussian, $\pm 4\sigma$ cut

(日) (同) (三) (三)

Identification of K^0 and Λ : $M(\pi^+\pi^-)$ and $M(p\pi^-)$

•
$$M(\pi^+\pi^-) = \sqrt{(\tilde{p}_{\pi^+} + \tilde{p}_{\pi^-})^2}$$

• Fit peak with Gaussian, $\pm 4\sigma$ cut

• $M(p\pi^{-}) = \sqrt{(\tilde{p}_{p} + \tilde{p}_{\pi^{-}})^{2}}$

• Fit peak with Gaussian, $\pm 4\sigma$ cut

(日) (周) (三) (三)

Colin Gleason (USC)

Axis Conventions for $\gamma(n) \rightarrow K^0 \Lambda$

 $\frac{d\sigma}{d\Omega} = \sigma_0 [1 - \alpha \cos \theta_x P_{circ} C_x - \alpha \cos \theta_z P_{circ} C_z + \alpha \cos \theta_y P]$ $C_{x,z} \text{ measure polarization transfer from } \gamma \text{ to } \Lambda \text{ w.r.t. } x/z \text{ axis, } P \text{ is the } \Lambda \text{ recoil polarization}$

(日) (同) (三) (三)

Maximum Likelihood Method

Once $\cos\theta_x$, $\cos\theta_y$, and $\cos\theta_z$ are calculated, we can extract the observables.

• C_x , C_z , P are simultaneously extracted using an unnormalized maximum likelihood function

$$\epsilon_{i}^{\pm}(x, y, z) = 1 \pm x \cos \theta_{x,i} \pm z \cos \theta_{z,i} + y \cos \theta_{y,i}$$
(1)

$$\log f = \sum_{i=1}^{N^+} \log(f_i^+) + \sum_{i=1}^{N^-} \log(f_i^-)$$
(2)

$$C_x = \frac{x}{\alpha P_{circ}}, \ C_z = \frac{z}{\alpha P_{circ}}, \ P = \frac{y}{\alpha}$$
 (3)

- Ideally, would have some normalization constant that takes care of normalization and Acceptance effects.
- Systematic studies using generated data are ongoing to test this method.

Background Channels: $\gamma d \rightarrow K^0 \Lambda(X)$

- Non-resonant, unpolarized $\gamma d \rightarrow \pi^+ \pi^- p \pi^-(p)$
- Higher mass channels:
 - $\gamma d \to K^0 \Sigma^0(p) \to K^0 \Lambda(\gamma p) \to \pi^+ \pi^- p \pi^-(\gamma p)$ • $\gamma d \to K^0 \Sigma^{*0}(p) \to K^0 \Lambda(\pi^0 p) \to \pi^+ \pi^- p \pi^-(\pi^0 p)$ • $\gamma d \to K^*(892) \Lambda(p) \to K^0 \Lambda(\pi^0 p) \to \pi^+ \pi^- p \pi^-(\pi^0 p)$

- $\gamma d \rightarrow K^0 \Lambda(X)$
- Simulations are used to separate K⁰Λ(p) events from higher mass channels
- Non-resonant background has a peak at X = p and is accounted for using M(pπ⁻)

・ロト ・四ト ・ヨト ・ヨト

- This method is based off the 2016 analysis note by N. Zachariou for studying FSI on $\vec{\gamma}d \rightarrow K^+ \vec{\Lambda}(n)$
- Extract the total observable (C^T_x, C^T_z, P^T) that includes background then correct it using background-to-total ratios to get a signal observable (C^S_x, C^S_z, P^S).
- Choose this method because it integrates over $\cos \theta_{x,z}$ allowing for finer kinematic binning.

イロト イヨト イヨト イヨト

- This method is based off the 2016 analysis note by N. Zachariou for studying FSI on $\vec{\gamma}d \rightarrow K^+\vec{\Lambda}(n)$
- Extract the total observable (C_x^T, C_z^T, P^T) that includes background then correct it using background-to-total ratios to get a signal observable (C_{*}^{S} , C_{*}^{S} , P^{S}).
- Choose this method because it integrates over $\cos \theta_{x,z}$ allowing for finer kinematic binning.

From the cross-section, we can write down the total polarized yield, N_{\pm}^{T} , as

 $N_{\pm}^{T} \approx N_{0}^{T} [1 \pm \alpha P_{circ} \cos \theta_{x} C_{x}^{T} \pm \alpha P_{circ} \cos \theta_{z} C_{z}^{T} + \alpha \cos \theta_{y} P^{T}]$

Colin Gleason (USC)

To find signal observables, need to eliminate the background observable. This is done by determining the total observables (C_x^T, C_z^T, P^T) and ratios in two regions of M_X .

- Region 1 corresponds to a signal-dominated region: $0.9 < M_X < 0.98 \text{ GeV}/c^2$
- Region 2 corresponds to a background dominated region $0.98 < M_X < 1.05 \text{ GeV}/c^2$

$$C_x^S = \frac{C_{x,1}^T - r_1^B C_x^B}{1 - r_1^B - r_1^{unpol}}, \quad C_x^S = \frac{C_{x,2}^T - r_2^B C_x^B}{1 - r_2^B - r_2^{unpol}}$$
(7)

(日) (周) (三) (三)

To find signal observables, need to eliminate the background observable. This is done by determining the total observables (C_x^T, C_z^T, P^T) and ratios in two regions of M_X .

- Region 1 corresponds to a signal–dominated region: $0.9 < M_X < 0.98 \text{ GeV}/c^2$
- Region 2 corresponds to a background dominated region $0.98 < M_X < 1.05 \text{ GeV}/c^2$

$$C_x^S = \frac{C_{x,1}^T - r_1^B C_x^B}{1 - r_1^B - r_1^{unpol}}, \ C_x^S = \frac{C_{x,2}^T - r_2^B C_x^B}{1 - r_2^B - r_2^{unpol}}$$
(7)

We can extract $C_{x,i}^{T}$ and calculate r_i^B and r_i^{unpol} . Solve for C_x^S :

$$C_x^S = \frac{r_1^B C_{x,2}^T - r_2^B C_{x,1}^T}{r_1^B - r_2^B - r_1^B r_2^{unpol} + r_1^{unpol} r_2^B}$$
(8)

r's determined by fitting simulations to the data

$$C_{x}^{S} = \frac{r_{1}^{B}C_{x,2}^{T} - r_{2}^{B}C_{x,1}^{T}}{r_{1}^{B} - r_{2}^{B} - r_{1}^{B}r_{2}^{unpol} + r_{1}^{unpol}r_{2}^{B}}$$

- $C_{x,i}^T$ is the total observable in Region i = 1, 2,
- r^B_i are the ratios of polarized background to signal
- r_i^{unpol} are the ratios of unpolarized background to signal
 - Scaling done by fitting pπ⁺π⁻π⁻ to M(pπ⁻)

- 1 Fit Double Gaus+background histograms to data
- 2 Use fit parameters to scale background
- 3 Calculate r_i^B and r_i^A

1: signal dominated, 2: $K^0 \Sigma^0$ dominated

< ロト < 同ト < ヨト < ヨト

M_X Fits Example: 2.2 < E_γ < 2.3 GeV

$$\gamma d \rightarrow K^0 \Lambda(X)$$
, $X = p, \gamma p, \pi^0 p$

- Colored histograms scaled using the corresponding fit parameter.
- Higher mass states included to get fit correct.
 - Excluded from observable extraction by cut at 1.05 ${\rm GeV}/c^2$
- Simultaneously extract C_x, C_z, P for each region using an unnormalized maximum likelihood method

イロン 不聞と 不同と 不同と

C_x -Polarization Transfer from $\vec{\gamma}$ to $\vec{\Lambda}$ Along x-axis

- Two BonnGa solutions from fits to K⁰Λ cross-sections
- Same resonances included, two sets of parameters give reasonable fit to $\gamma d \rightarrow K^+ \Sigma^-(p)$ and $K^0 \Lambda(p)$
- BonnGa provided me with the two solution's projected onto C_x, C_z, P
- No K⁰Λ polarization observables included in fits
- Potential impact: resolution of current ambiguity, or lead to new results

 C_x : Comparison of $\vec{\gamma}d \to K^0 \vec{\Lambda}(p)$ to $\vec{\gamma}p \to K^+ \vec{\Lambda}$

March 29, 2017 14 / 30

C_z -Polarization Transfer from $\vec{\gamma}$ to $\vec{\Lambda}$ Along z-axis

 $\gamma d \rightarrow K^0 \Lambda(p)$ BonnGa 1 BonnGa 2

≣ ► ◀ ≣ ► Ξ ∽ ۹. March 29, 2017 15 / 30

イロト イポト イヨト イヨト

C_z : Comparison of $\gamma d \to K^0 \Lambda(p)$ to $\gamma p \to K^+ \Lambda$

March 29, 2017 16 / 30

P Comparison with Different Extraction Methods

- Systematic test for extracting *P*
- Different extraction and background subtraction methods
- Same cuts on $M(p\pi^-)$, $M(\pi^+\pi^-)$, and $p_X < 0.2 \text{ GeV}/c$
- Me, NC6, NC2

Image: A match a ma

 All points have good visual agreement and calculations show no significant biases

P Comparison with g13b

- Derek Glazier extracting *P* from g13b data (linearally polarized γ)
- Different background subtraction and extraction method (Extended Maximum Likelihood)
- Different cuts from me and Nick Compton
- Derek has no cut on neutron momentum
- All points in good visual agreement, early calculations show good agreement statistically (pull distributions, correlations)

Colin Gleason (USC)

$R = \sqrt{C_x^2 + C_z^2 + P^2}$: Total Polarization Transfer

- Low E_γ- Λ fully polarized
- Mid E_γ Λ fully polarized at forward and backward angles
- High E_γ- large uncertainties, but Λ near full polarizations within uncertainties

3

イロト イポト イヨト イヨト

Dependence on Neutron Momentum

- Neutron is not free
- Need free neutron for CCA
- How well do the observables represent the free neutron?

Colin Gleason (USC)

March 29, 2017 20 / 30

3

Conclusion and Outlook

- First estimates of the polarization transfers from circularly–polarized photons to the Λ and the Λ recoil polarizations in the reaction $\gamma d \rightarrow K^0 \Lambda(p)$ have been obtainted
- A maximum log likelihood method was used to extract the observables
 - Background subtraction method is promising- work still being done to improve fits and determine optimal binning in M_X , E_{γ} , and $\cos\theta_{K^0}^{CM}$.
- Similarities and differences are observed in data from free proton (different isopsin, reaction dynamics, resonances).
- Very good agreement in extracting *P* between 3 different methods for g13a data.
 - Potential for very good agreement in P over g13a and g13b.
- Timeline: thesis for the summer and analysis note to follow.
- Major work left (and in progress) is to quantify systematics.

イロト 不得下 イヨト イヨト 二日

Summary for Friday Report

 C_{x} for $\gamma d \to K^{0} \Lambda(p)$

- K⁰Λ cross-sections resulted in two reasonable solutions from BonnGa PWA.
- BonnGa provided me with the two solutions projected onto C_x, C_z, P
- Same resonances included, two sets of parameters give reasonable fit to γd → K⁺Σ[−](p) and K⁰Λ(p)
- No K⁰ A polarization observables included in fits

(日) (同) (三) (三)

 Potential impact: resolution of current ambiguity, or lead to new results

Backup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Background Subtraction

Method from 2016 analysis note by N. Zachariou for extracting observables on $\vec{\gamma} d \rightarrow K^+ \vec{\Lambda}(n)$. The goal is to remove background channels by fitting M_X with simulated background channels.

 $N^{T} = N^{S} + N^{B} + N^{unpol}$ (9)

$$N^T C_x^T = N^S C_X + N^B C_X^B \tag{10}$$

$$C_X^S = \frac{C_X^I - r^B C_X^B}{1 - r^B - r^{unpol}}$$
(11)

• C^S is the signal observable

- C^B is the background observable
- $C^T = \frac{N^S C^S + N^B C^B}{N}$ is the total value of the observble
- r^B is the ratio of polarized background to data
- r^{unpol} is the ratio of unpolarized background to data

Determine the effective observables and ratios in two regions, $C_{X,1}^{T}, C_{X,2}^{T}, r_1^B, r_2^B, r_1^{unpol}$, and r_2^{unpol}

$$C_X^S = \frac{C_{X,1}^I - r_1^B C_X^B}{1 - r_1^B - r_1^{unpol}}$$
(12)

$$C_X^S = \frac{C_{X,2}^I - r_2^B C_X^B}{1 - r_2^B - r_2^{unpol}}$$
(13)

Two equations, two unknowns C_X^S and C_X^B . Can solve:

$$C_{x}^{S} = \frac{r_{1}^{B}C_{x,2}^{T} - r_{2}^{B}C_{x,1}^{T}}{r_{1}^{B} - r_{2}^{B} - r_{1}^{B}r_{2}^{unpol} + r_{1}^{unpol}r_{2}^{B}}$$
(14)

March 29, 2017 24 / 30

Background Subtraction and Observable Extraction

- $SF^{un}H^{sim}_{p\pi^+\pi^-\pi^-}$ is fixed.
- All other parameters (SF, A's, μ, σ's) allowed to vary.
- $r^B = \frac{SF^{\Sigma 0}H_{\Sigma 0}^{sim}}{H^{data}}$ • $r^{unpol} = \frac{SF^{un}H_{pn}^{sim}+\pi^-\pi^-}{H^{data}}$
 - 1 and 2 represent Regions
 1 and 2

イロト イポト イヨト イヨト 二日

Calculation of $r_i^{unpol} = \frac{N_0^{unpol}}{N_0^T}$

- Can not distinguish signal from background using M_X for non-resonant $p\pi^+\pi^-\pi^-$
- The final yield is calculated using M_X , but the proper scaling is determined from $M(p\pi^-)$
- Scaling done by fitting $M(p\pi^{-})$ with a Double Gaussian $+p\pi^{+}\pi^{-}\pi^{-}$ simulation

Calculation of $r_i^{unpol} = \frac{N_0^{unpol}}{N_0^T}$

- Can not distinguish signal from background using M_X for non-resonant $p\pi^+\pi^-\pi^-$
- The final yield is calculated using M_X , but the proper scaling is determined from $M(p\pi^-)$
- Scaling done by fitting $M(p\pi^{-})$ with a Double Gaussian+ $p\pi^{+}\pi^{-}\pi^{-}$ simulation

M(pπ⁻) Data

P Comparison with Nick Compton

- Nick Compton extracted cross-sections for γd → K⁰Λ(p) for g13 data
 - Two methods to extract P: 2-bin (NC2) and a multi-bin (NC6)

• NC2:
$$P = \frac{N^+ - N^-}{\frac{\alpha}{2}(N^+ + N^-)}$$

- N^{+/-} is corrected yield above or below cosθ_y=0
- NC6: get yield in 6 cosθ_y bins, fit acceptance corrected yield to straight line
- $N(\cos \theta_y) = \frac{N}{2}(1 + P_{\Lambda} \alpha \cos \theta_y)$

- 4 目 ト - 4 日 ト - 4 日 ト

P Comparison with Nick Compton

- Nick Compton extracted cross-sections for γd → K⁰Λ(p) for g13 data
 - Two methods to extract P: 2-bin (NC2) and a multi-bin (NC6)

• NC2:
$$P = \frac{N^+ - N^-}{\frac{\alpha}{2}(N^+ + N^-)}$$

- N^{+/-} is corrected yield above or below cosθ_y=0
- NC6: get yield in 6 cosθ_y bins, fit acceptance corrected yield to straight line
- $N(\cos\theta_y) = \frac{N}{2}(1 + P_{\Lambda}\alpha\cos\theta_y)$

•
$$y = [0] + [1][2]x$$

• Fix
$$[0] = \frac{N}{2} \frac{2}{PYBINS}$$
 and $[1] = \frac{N}{2} \alpha \frac{2}{PYBINS}$, $PYBINS=6$

•
$$[2] = P_{\Lambda}$$

- 4 同 6 4 日 6 4 日 6

March 29, 2017 27 / 30

Dependence on Neutron Momentum

Dependence on Neutron Virtuality

(日) (同) (三) (三)

Dependence on Neutron Momentum

Colin Gleason (USC)