

[>] Dutline

2

3

3

2

3

- **Motivation** \succ
- Particle Identification
- Yield Extraction
- **Results** \succ
- **Summary** ≻

Motivation

T. Mibe et al. PHYSICAL REVIEW C 76, 052202(R) (2007)

Motivation

3

3

~

3

3

Reaction of interest

- $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d(\pi^0)$
- ω -meson beam cannot be produced in a lab.

Limited World Data

 Photoproduction of omega mesons off Deuteron: limited studies → limited world data.

Group E_v [GeV] t [GeV/c²] **Comments** Gupta et. al. [SLAC] 5.5 Low statistics. No Phys. Rev. D 14, 42 (1976) mass fit was possible 3.9 Morris et. al. [NINA] *Total Cross-section Nuclear Physics B119 (1977) measured: $1.4 \pm 0.5 \,\mu b$ *Coupling constant ratio (rho/omega) measured

Photon Coupling ratio of the vector mesons:

 $\gamma_{\rho}: \gamma_{\omega}: \gamma_{\varphi}=1:3:-3/\sqrt{2}$

- Assuming SU(3) and SU(6) symmetry.
- The coupling constants provide understanding for EM form factors of pseudo-scalar mesons and nucleons, EM meson decays, etc.

Understanding in the Perturbative Regime:

- Gluon exchange between hadrons at higher energies dominates hadron-hadron total cross-sections.
- Jlab energy regime: Double scattering contributions are enhanced.

Particle Identification

Cherent ω-meson Photoproduction off Deuteron CLAS coll. Meeting 03/30/2017

Global Spectrum

[>] Cuts Applied

2

2

2

- Timing cuts made using momentumdependent analysis
 - One "good photon", |Δt|<1 ns
 - -37 cm < *z*_{vertex}< −13 cm
 - Fiducial cuts applied $\varphi = a e^{b\theta} + c$
 - Minimum Theta Cut
 - Minimum Momentum Cuts
- Missing mass Cut.
- Bad SC Paddles removed.

Particle	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6
 +	23, 27		11, 13, 23, 31	23, 33, 35	23, 29	23
n	≥ 43	≥ 45	≥ 40	≥ 46	≥ 46	≥ 45
π_	23, 27		11, 15, 16, 23, 31	23, 27, 35	20, 23, 29	23
π	≥ 41	≥ 41	$34-36, \ge 41$	≥ 43	≥ 43	≥ 42
d	23, 27	23	11, 22, 23, 31	23	23, 29	23
u	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35	≥ 35

- Binning

• 4 incident photon energy and variable 4-momentum transfer bins.

> Yield Extraction

$E_{\gamma} = [1.4, 1.8]$

Coherent ω-meson Photoproduction off Deuteron

Differential Cross-section

Systematic Uncertainties

• Systematic errors are calculated based on the relative difference between the nominal and the variation.

Source	Description	Uncertainty
Flux Consistency/Luminosity	Flux per run/sub run and previous $g10$ results	8.00%
<i>t</i> -slope dependence	Varied from $b = 2.5$ to $b = 0$	0.04%
Sector Dependence	Comparison of $(d\sigma/dt)_{sector}$ versus Nominal	2.00%
Timing Cut	Varied from a 3σ to 3.5σ cut	0.60%
Minimum $ p $ Cut	Removed	0.52%
Missing Mass Cut	Varied from a 3σ to 2.5σ cut	3.46%
z-Vertex Cut	Varied from $ z + 25 < 11$ to $ z + 25 < 11.5$	0.73%
Fiducial Cut	Varied from a 50% to a 100% cut	1.34%
Signal Integral Range	Varied from 4σ to 5σ	0.10%
Choice of Background function	Pol1 versus Pol2	8.59%
Branching Ratio	PDG value	0.70%
Total Systematic	Uncertainty (Added in quadrature)	12.54%

Differential Cross-section

Preliminary

- Calculations are provided by Dr. Sargsian (FSU).
- Production of ω is within the Vector Dominance Model.
 - Does not include:

- Pion exchange contribution at low energy.
- At large | t |, contibution of $\rho \omega$ mixing.

* Coherent Photo- and Leptoproduction of Vector Mesons from Deuterium, Frankfurt et al, Nucl.Phys. A622 (1997) 511-537

~ Summary

~

- The cross-section data provides sensitivity to the nucleonscattering data in the energy and momentum transfer range mentioned.
 - First high statistics world data for the reaction: $\gamma d \rightarrow \omega d$
 - $\frac{d\sigma}{dt} \propto e^{-b|t|} \rightarrow$ as expected for a diffractive process.
 - Analysis under Review.
 - Next steps would include:
 - Collaboration with theorists focusing the kinematic regime under investigation.
 - Paper for publication
 - ρ meson photoproduction.
 - d* interference.

Extras	
,	
1	4
Coherent ω-meson Photoproduction off Deuteron CLAS coll. Meeting 03/30/2017	

Diffractive DCS

~

2

» SLAC ρ Data

Back-up

Plot Description

The 2D histogram is made after basic cuts are applied to the data.

Plot on the left is the y-projection of the 2D histogram. It is the mass distribution for the π^0 and the outgoing d.

Plot on the right is the x-projection of the 2D histogram. It is the mass distribution for $\pi^+ \pi^- \pi^0$ or the ω -meson distribution.

Previous Studies

Group	E _γ [GeV]	t [GeV/c²]	Comments
Gupta <i>et. al.</i> [SLAC] Phys. Rev. D 14, 42 (1976)	5.5	-	Low statistics. No mass fit was possible
Morris <i>et. al.</i> [NINA] Nuclear Physics B119 (1977)	3.9	-	*Total Cross-section measured: 1.4 ± 0.5 μb *Coupling constant ratio (rho/omega) measured

Lab Angle vs Momentum Back-up

Back-up

" Investigated Channels

2

2

2

 $\gamma d \rightarrow \rho d \rightarrow \pi^+ \pi^- d$

ρ(770) [^h]	$I^{G}(J^{PC}) = 1^{+}(1^{-})$			
Mass $m = 7$ Full width Γ $\Gamma_{ee} = 7.04 =$	Mass $m = 775.26 \pm 0.25$ MeV Full width $\Gamma = 149.1 \pm 0.8$ MeV $\Gamma_{ee} = 7.04 \pm 0.06$ keV			
ρ(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	р (MeV/c)
ππ	\sim 100	%		363

 $\gamma d \rightarrow \omega d \rightarrow \pi^+ \pi^- d (\pi^0)$

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$ ω(782) Mass $m = 782.65 \pm 0.12$ MeV (S = 1.9) Full width Γ = 8.49 \pm 0.08 MeV $\Gamma_{ee} = 0.60 \pm 0.02 \text{ keV}$

ω(782) DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	р (MeV/c)
$\pi^+ \pi^- \pi^0$	(89.2 ±0.7)%		327
$\pi^0 \gamma$	$(8.28 \pm 0.28)\%$	S=2.1	380
$\pi^+\pi^-$	$(1.53 \substack{+0.11 \\ -0.13})\%$	S=1.2	366

