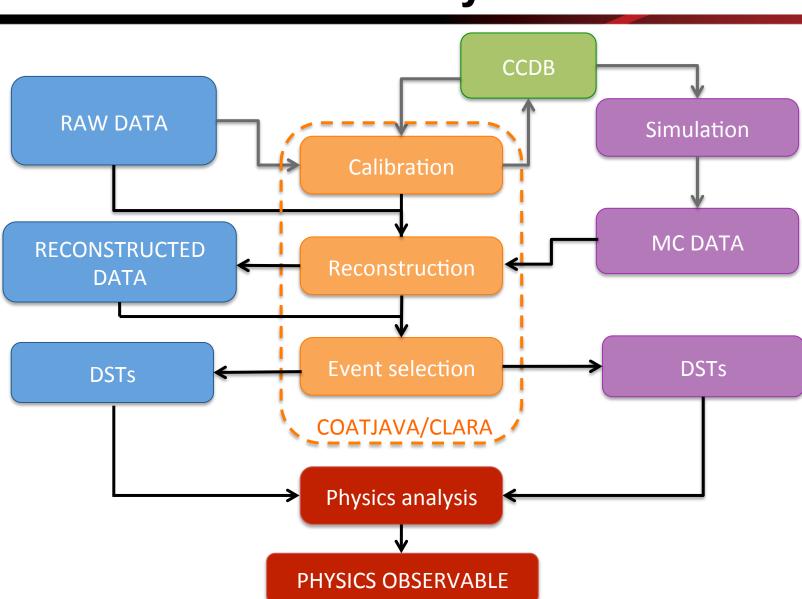


CLAS12 Analysis and First Experiment Organization

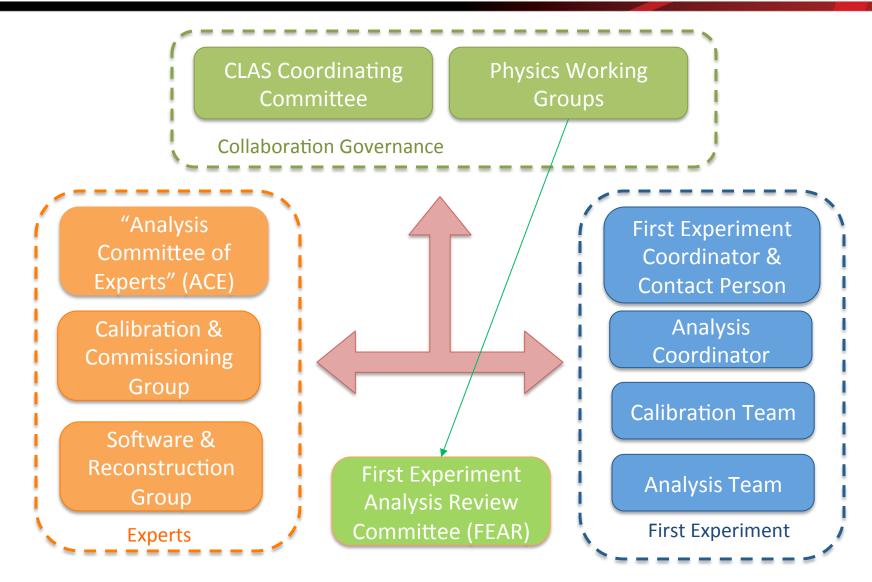
Original "Charge" Presentation by Latifa & Jerry

January 13, 2017

With additions from Sebastian March 2017



- Complete COATJAVA reconstruction and calibration tools.
- Extend COATJAVA to include event selection.
- Create this group
 - Guide development of analysis algorithms
 - PID, momentum corrections, background subtraction, fiducial cuts
 - Higher level analysis kinematic fitting, PWA
 - Standardize the algorithms and software.
- Create first experiment analysis review committee before the fall run to begin assessing the techniques used in the previous bullet.
- Get ready for the fall run: develop and run simulations for the experiments in Run Group A, define optimal running conditions, complete development of necessary tools, and define infrastructure to manage the work.
- Documentation and dissemination.


CLAS12 Data Analysis Scheme

CLAS12 First Experiment Organization

Expert Analysis Group Membership

- Ken Hicks
- Dave Ireland
- Sebastian Kuhn
- Silvia Niccolai
- Eugene Pasyuk
- Larry Weinstein
- + Kyungseon Joo

To-Do List (The Agenda)

1. Common Tools to do the following (DST generation)

o Good run, file and event selection

o Compile list of special runs required (calibration, in/outbending, no B, H, 2.2 GeV...)

o Helicity sorting and matching, false asymmetries

o Beam and target polarization, dilution, polarized background

o Luminosity

o PID

- o Backgrounds
- o Vertex and momentum corrections
- o Fiducial cuts and acceptance
- o Detector and reconstruction inefficiencies
- o Kinematic fitting
- o Radiative corrections
- o Simulation of all of the above (GEMC)

2. "Model" analysis notes, algorithms, checklists...

Luminosity

Integrated Charge Trigger Efficiency

Target thickness

- Precise measurement of the cell size
- Continuous monitoring of target cell pressure and temperature
- Account for thermal contraction
- Streets of windows (empty vs. full target)

- Ourrent measurement
 - Cannot use Faraday Cup usual way.
 - Alternate methods and how to calibrate them
- Live time
 - Periodic clock
 - Random clock
 - accepted/total triggers
 - removal of bad beam intervals
- Stability on run-by-run basis
 - Number of Reconstructed Particles per event
- Check any nonlinear rate dependence if any.
 - take data with different luminosity
- Empty target runs

Jefferson Lab

- Cluster finding electron trigger.
 - Continuous monitoring of calorimeters calibration
 - If any drift is observed recalibration is needed and new calibration parameters uploaded to trigger FPGA.
- How to measure a complex trigger efficiency

PID

PID for CLAS12

Suggestions/ideas from the ACE

Abstract

January 2017

This document describes the lessons learned on particle identification from analyses of CLAS data, and gives an overview of the typical PID procedures that are likely to be adopted for CLAS12 as well.

S. Niccolai, IPN Orsay

Contents

1	PID: what we learned from CLAS that could be useful for CLAS12 1.1 PID cuts are not "absolute" 1.2 PID cuts are linked to other cuts 1.3 Interplay between subdetectors and sector dependence						
2	2 CLAS and CLAS12: what's common, what changed						
3	PID cuts by particle type 3.1 Electrons 3.2 Protons and charged mesons 3.3 Photons 3.4 Neutrons	4 4 5 6 6					

Vertex and momentum corrections close

Tracking Corrections For CLAS 12

Sebastian and Larry

General Philosophy

Make sure run plan contains all necessary auxiliary measurements

Zero-field tracks for relative alignment

Inbending and outbending field to disentangle DC displacements from magnetic field imperfections

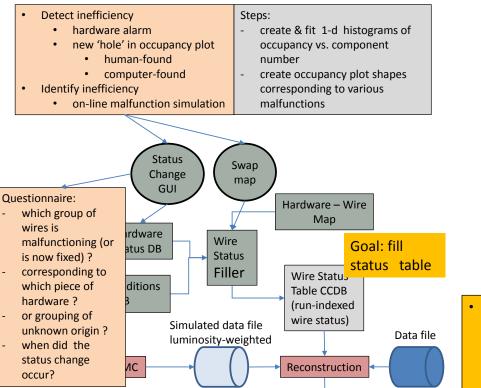
H runs for elastic and other exclusive channels (must also have multi-particle exclusive channels to fully cover kinematic plane, e.g. p(e,e'p pi+ pi-) or d(e,e'pp pi-)

Fix tracking **now**, not after the fact

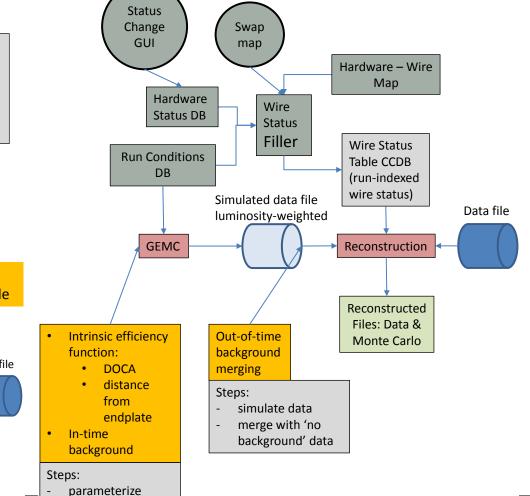
Optimize Kalman filter to provide best fit to measured hits (DC, SVT, µMEGAS, PreRad) including energy loss, multiple scattering and energy loss straggling as well as possible magnetic field and wire position uncertainties; incorporate actual beam position and, if appropriate, detached vertices

This will be improved iteratively, with data

Goal: Full set of 4-momenta and vertex positions WITH correlation matrix! Allows for determination of optimum vertex (detached or on beam) including m. sc. by considering all particles in the event. Allows for kinematical fitting of momenta by considering all particles in the event.



Detector and reconstruction inefficiencies close


compare to data

iterate

Simulating Malfunction – Related Inefficiencies

Simulating Intrinsic and Background – Related Inefficiencies

Council of Elders: Mar. 14, 2017, Mac Mestayer Reconstructed Files: Data &

Monte Carlo

Goal: generate

run according to

number of events per

recorded luminosity

"Model" analysis notes, algorithms, checklists close

Suggested template	Procedure				their locations. If skimming was used during
	Used PART bank reconstruction for the	N/A	Yes	No	ot bias data subset. Provide list of "good" and ation.
The run group document should serve two purposes.	analysis. EVNT was NOT used				
1. Summarize all information needed for anyone	Momentum corrections as described in	N/A	Yes	No	1
now and will analyze in the future. This include experiment configuration and running conditic	the g12 note				were determined and handled.
complete list of all standard tools and procedu	Beam energy correction as described in	N/A	Yes	No	
the analysis of this data set, how to get them an 2. Contain description, justification and validation procedures, corrections etc.	the g12 note				ters. Criteria for knock out.
	Inclusive Good run list as described in ta-	N/A	Yes	No	
	ble 7. Individual analysis may use a subset				
Summary of running conditions	of it				
Dates of the run Beam: 	Target density and its uncertainty as de-	N/A	Yes	No	
• Beam: energy,	scribed in the g12 note				
current,	Photon flux calculation procedure as de-	N/A	Yes	No	ziencies.
radiator thickness 	scribed in the g12 note				
• Target:	Lower limit for the systematic uncertainty	N/A	Yes	No	
Material Dimensions	of normalized yield is 5.7%				
Offset	Photon polarization calculation procedure	N/A	Yes	No	tional efficiencies
Start counter offsetCLAS configuration if different from standard	as described in the g12 note				matches the data.
 Trigger configuration (s), thresholds 	Systematic uncertainty of the photon po-	N/A	Yes	No]
Anything else specific for the experiment	larization as described in the g12 note				
	gsim parameters	N/A	Yes	No	
Calibration quality and PID					
Present plots, which show calibration quality and det subsystems used in the experiment. Show how defaul	gpp smearing parameters	N/A	Yes	No	
typical resolutions fro various detector subsystems.					
	DC efficiency map	N/A	Yes	No	ocation. Systematic uncertainties of absolute
Momentum and energy corrections and kine					omparison of normalized yields for various _ Comparison with known cross sections.
Describe standard momentum correction, beam energy c they were obtained and demonstrate their effect. For kin		N/A	Yes	No	
distributions and confidence level distributions.					⊣certainties
	Minimal TOF knockout	N/A	Yes	No	
Cooking procedures					
Document what software was used for cooking, its location	Lepton ID is used	N/A	Yes	No	ns and tools

