CLAS EG6: Particle ID, Event Selection, and Raw Asymmetries for Coherent Processes

In this talk, I will outline relevant particle identification, selection of coherent DVCS and DVMP events, and details on extracting raw asymmetries. A comparison to M. Hattawy's analysis will also be presented.

Frank Thanh Cao UConn

Outline

- (Relevant) Particle ID:
 - Electron
 - Helium
 - IC Photons
 - Identifying DVCS Photons
 - Reconstructing π^0 and η
- Event Selection
 - Exclusivity Cuts
- Raw Asymmetries for coherent processes:
 - DVCS
 - DVMP

Particle Identification

In a coherent DVCS (DVMP) process off Helium-4, the final state particles that are at play are:

- Electron
- Helium-4

And depending on which process is of interest

- <u>DVCS</u>:
 - γ
- <u>DVMP</u>:
 - π^0 decays into:
 - Y
 - **،** ۱
 - η decays into:
 - γ • γ

Since the only final state particles that are involved are the electron, helium-4, and the photon, we will focus on these particle identifications.

The scattered electron, as the trigger, plays the most important role in defining an event. Listed below are the criteria for an electron:

- Preliminary Cuts
- Corrections
 - Vertex Correction
 - EC Sampling Fraction Correction
- Vertex Cut
- EC Cuts:
 - Fiducial Cut
 - Energy Cut
- DC Cuts :
 - IC Shadow Cut
 - DC Fiducial Cut
- CC Cuts:
 - Number of photoelectrons cut
 - CC Fiducial Cut

An electron that passes every criterion is considered to be a *good* electron.

If one and only one *good* electron is identified, identification of other particles begins.

Frank Thanh Cao (UConn)

The scattered electron, as the trigger, plays the most important role in defining an event. Listed below are the criteria for an electron:

- Preliminary Cuts
- Corrections
 - Vertex Correction
 - EC Sampling Fraction Correction
- Vertex Cut
- EC Cuts:
 - Fiducial Cut
 - Energy Cut
- DC Cuts :
 - IC Shadow Cut
 - DC Fiducial Cut
- CC Cuts:
 - Number of photoelectrons cut
 - CC Fiducial Cut

An electron that passes every criterion is considered to be a *good* electron.

If one and only one *good* electron is identified, identification of other particles begins.

The scattered electron, as the trigger, plays the most important role in defining an event. Listed below are the criteria for an electron:

- Preliminary Cuts
- Corrections
 - Vertex Correction
 - EC Sampling Fraction Correction
- Vertex Cut
- EC Cuts:
 - Fiducial Cut
 - Energy Cut
- DC Cuts :
 - IC Shadow Cut
 - DC Fiducial Cut
- CC Cuts:
 - Number of photoelectrons cut
 - CC Fiducial Cut

An electron that passes every criterion is considered to be a *good* electron.

If one and only one *good* electron is identified, identification of other particles begins.

The scattered electron, as the trigger, plays the most important role in defining an event. Listed below are the criteria for an electron:

- Preliminary Cuts
- Corrections
 - Vertex Correction
 - EC Sampling Fraction Correction
- Vertex Cut
- EC Cuts:
 - Fiducial Cut
 - Energy Cut
- DC Cuts :
 - IC Shadow Cut
 - DC Fiducial Cut
- CC Cuts:
 - Number of photoelectrons cut
 - CC Fiducial Cut

An electron that passes every criterion is considered to be a *good* electron.

If one and only one *good* electron is identified, identification of other particles begins.

Helium-4 Identification

Now that a *good* electron has been identified, we can look at the ⁴He. Listed below are the criteria for helium from the RTPC:

- Vertex Cuts
- Ionization Point Cuts
- Track Reconstruction Cut

An RTPC track that passes every criterion is considered to be a *good* ⁴He.

Frank Thanh Cao (UConn)

March 29, 2017

Photon Identification

Now that a *good* electron has been identified, we can look at the photons. Listed below are the criteria for photon from the IC:

- Møller Electron Reduction Cut
- IC Fiducial Cut
- IC Hot Channel Cut

A photon that passes every criterion is considered to be a *good* photon and will be the used for the rest of the analysis and discussion.

Frank Thanh Cao (UConn)

March 29, 2017

π^0 and η **Reconstruction**

 π^0 and η most favorably decays into two photons. To reconstruct the meson, *Mes*, we need to construct photon pairs by combining good photons.

- Photon Pairing :
 - Each photon is paired with another through handshaking combinatorics. Their Lorentz vectors are combined in the usual way:
 - $P_{\gamma\gamma} = P_{\gamma^1} + P_{\gamma^2}$

 $= ([P_{x_{-1}} + P_{x_{-2}}], [P_{y_{-1}} + P_{y_{-2}}], [P_{z_{-1}} + P_{z_{-2}}], [E_1 + E_2])$

- Invariant Mass Cut :
 - A loose cut is applied on the invariant mass:
 - \mid M_{$\gamma\gamma$} M_{Mes} \mid < 0.206 GeV where:
 - M_{Mes} :
 - 0.1349766 GeV (for π^0)
 - $0.5478620 \text{ GeV} (\text{ for } \eta)$

Photon Index \rightarrow

All photon pairs passing the invariant mass cut are then taken to be candidates for DVMP

March 28, 2017

Now that we have identified each of the key players, we have to make sure the identified particles are correlated with each other. This is done with Exclusivity Cuts.

March 30, 2017

Now that we have identified each of the key players, we have to make sure the identified particles are correlated with each other. This is done with Exclusivity Cuts.

March 28, 2017

Preliminary Cuts:

DVCS Candidates

To ensure a deeply virtual process and to avoid resonances:

- $Q^2 > 1 \text{ GeV}^2$
- $E_{\gamma} > 2 \text{ GeV}$

All events are required to have:

- One good electron
- One good RTPC track
- One good DVCS Photon Candidate:
 - if more than one, find the most energetic and use that as the DVCS photon

Variable	Passes if	Units
$M_{\chi_0}^{2}$	< 25	GeV ²
M _{X1} ²	> -2	GeV ²
P _T	< 8	GeV/c
E _{X2}	< 2	GeV
θ	< 6	deg.
Δ φ	< 15	deg [.]

Frank Thanh Cao (UConn)

March 28, 2017

Missi	ng Pa	rticle, X	
$P_X =$	P _{init}	- P _{fin}	

Frank Thanh Cao (UConn)

March 30, 2017

 $\frac{\text{Missing Particle, X:}}{P_X = P_{\text{init}} - P_{\text{fin}}}$

$\frac{\text{Initial}}{\text{DVCS}} : \frac{\text{Initial}}{\text{e}^{4}\text{He}} \rightarrow \frac{\text{Final}}{\text{e}'^{4}\text{He}'\gamma}$

Exclusivity Cuts:

- Final State: e' γ
 - Missing Mass² Cut:
 - $M_{\chi_0^2} \mu_{M0^2} | < 3\sigma_{M0^2}$

DVCS Values:

	Variable	μ	σ	Units
2	$M_{\chi 0}{}^2$	1.39930e+01	1.61245e+00	GeV ²

Missing Particle, X: $P_X = P_{init}$ -

Exclusivity Cuts:

- Final State: e' ⁴He' •
 - Missing Mass² Cut :
 - $|M_{\chi_1^2} \mu_{M1^2}| < 3\sigma_{M1^2}$
 - Cone Angle Cut:
 - $MIN_{\theta} < \theta_{X1, \gamma} < MAX_{\theta}$

DVCS Values:

Variable	μ	σ	Units
M _{X1} ²	-3.45128e-02	2.28247e-01	GeV ²
Variable	Minimum	Maximum	Units

Missing Particle, X: $P_X = P_{init}$

DVCS :

Exclusivity Cuts:

• Final State: e' ⁴ He' γ	Vari
• Missing Mass ² Cut: • $ M_{\chi 2}^2 - \mu_{M2^2} < 3\sigma_{M2^2}$	M
 Energy Cut: MIN_{PT} < E_{X2} < MAX_{PT} 	Δ
 Transverse Momentum Cut: P_T < MAX_{PT} 	Vari
• Coplanarity Cut: • $ \Delta \phi - \mu_{\Delta \phi} < \sigma_{\Delta \phi}$	E

DVCS Values:

Variable	μ	σ	Units
$M_{\chi 2}^{2}$	-2.98662e-03	9.28645e-03	GeV ²
Δφ	1.86020e-01	4.64936e-01	deg.
Variable	Minimum	Maximum	Units
Variable E _{X2}	Minimum -0.45000e+00	Maximum 0.50000e+00	Units GeV

March 30, 2017

For all further discussion/analysis:

- The curves represent events that has passed the preliminary cuts.
- The translucent shaded region represents events that pass all cuts except for the cut on the plotted variable.
- M. Hattawy's is in **BLUE**
- My results are in **RED**

Coherent DVCS Exclusivity Cuts

Coherent DVCS Exclusivity Cuts

Frank Thanh Cao (UConn)

March 28, 2017

Preliminary Cuts:

π^0 Precuts

To ensure a deeply virtual process and to avoid resonances:

- $Q^2 > 1 \text{ GeV}^2$
- $E_{\pi 0} > 2 \text{ GeV}$
- y < 0.85 ($E_e > 0.15E_{Beam}$)

All events are required to have:

- One good electron
- One good RTPC track
- One good π^0

Variable	Passes if	Units
$M_{\chi_0}^{2}$	\in (5, 25)	GeV ²
M _{X1} ²	\in (-2, 3)	GeV ²
$M_{\chi_2}^{2}$	\in (-1.5, 1)	GeV ²
P _x	< 1	GeV/c
P _y	< 1	GeV/c
P _T	< 0.6	GeV/c
E _{X2}	< 1.5	GeV
θ	< 7	deg.
Δ φ	< 15	deg [.]

Coherent DVCS and DVMP Event Selection **Missing Particle, X:**

 $P_X = P_{init}$ Final

Exclusivity Cuts:

- Final State: e' π^0 •
 - Missing Mass² Cut :

• $|M_{\chi_0^2} - \mu_{M0^2}| < 3\sigma_M$

τ^0	Va]	lues:

	Variable	μ	σ	Units
0^2	$M_{\chi 0}^{2}$	1.39835e+01	1.33781e+00	GeV ²

March 30, 2017

 $\frac{\text{Missing Particle, X:}}{P_{X} = P_{\text{init}} - P_{\text{fin}}}$

DV π^{0} P: e⁴He \rightarrow e'⁴He' π^{0}

Exclusivity Cuts:

- Final State: e' ⁴He'
 - Missing Mass² Cut :
 - $|M_{\chi_1^2} \mu_{M1^2}| < 3\sigma_{M1^2}$
 - Cone Angle Cut:
 - $MIN_{\theta} < \theta_{X1, \pi^{0}} < MAX_{\theta}$

<u> π^0 Values:</u>

	Variable	μ	σ	Units
^2	$M_{\chi 1}{}^2$	-1.30346e-02	2.07791e-01	GeV ²
$\boldsymbol{\zeta}_{\boldsymbol{\Theta}}$	Variable	Minimum	Maximum	Units

$\frac{\text{Missing Particle, X:}}{P_{X} = P_{\text{init}} - P_{\text{fin}}}$

$\mathrm{DV}\pi^{0}\mathrm{P}$:

Exclusivity Cuts:

- Final State: e' ⁴He' π^0
 - Missing Mass² Cut:

•
$$|M_{\chi 2}^2 - \mu_{M2^2}| < 3\sigma_{M2^2}$$

• Energy Cut:

• $MIN_{PT} < E_{X2} < MAX_{PT}$

- Transverse Momentum Cut:
 - $P_T < MAX_{PT}$

•
$$| \Delta \phi - \mu_{\Delta \phi} | < \sigma_{\Delta \phi}$$

<u> π^0 Values:</u>

Variable	μ	σ	Units
$M_{\chi 2}^{2}$	-2.31650e-03	8.65851e-03	GeV ²
$\Delta \varphi$	1.41750e-01	3.84202e-01	deg.
E _{X2}	7.80328e-03	1.85770e-01	GeV
P _T	4.36619e-02	3.25254e-02	GeV/c

Coherent π^0 Exclusivity Cuts

<u>w LUPU L</u>

Conclusion and Outlook

- Extraction of Raw Asymmetries shows verification of previous work (M. Hattawy) and leads to confidence in
 - Particle Identification
 - Exclusivity Selection
- Can compare to other works
 - Currently comparing with B. Torayev to see if number of coherent:
 - DVCS
 - π^0
 - η
 - events can be increased (since B. Torayev has a factor of ~2 more coherent π⁰ events)
- Currently working on simulations to extract experimental asymmetries
- Currently working on extracting coherent η raw asymmetries

Because you never know what questions you're going to get

<u>Electron</u> Preliminary Cuts:

Variable	Passes if	Units
stat	> 0	
dc_stat	> 0	
PID	== 11	
р	\in (0.8, 6.0)	GeV/c
E _i	> 0	GeV
E _o	> 0	GeV
nphe	>0	

Electron

- Vertex Cuts (Applied on corrected corrected vertex
 - -77.0 < corr_vz < -50.0
- nphe[cc[ipart] -1] > 20

Electron

EC Sampling

- ec_ei[ec[ipart] -1] > 0.06 (GeV)
- Get corrected EG6 sampling fraction (varies with time {run number, event number} and sector): SF_{corr} = (E_
- Data Table Here
 - $| SF_{corr} \mu(p) | < \sigma(p)$
 - $\mu(p)$ and $\sigma(p)$ are 3rd degree polynomials of p (at the end)
- Corrected EC sampling Fraction Cut : SF_{corr}
 - $| SF_{corr} \mu(p) | < \sigma(p)$

•
$$\mu(p) = a_{\mu} + b_{\mu}p + c_{\mu}p^2 + d_{\mu}p^2$$

$$\sigma(p) = a_{\sigma} + b_{\sigma} p + c_{\sigma} p^2 + d_{\sigma} p^2$$

α \ Parameter	a _α	b _α	Cα	d _α
μ	2.56084e-01	4.32374e-02	9.14180e-03	8.15895e-04
σ	0.0572976	0.0272689	0.00857596	-0.000979978

Frank Thanh Cao (UConn)

March 30, 2017

Electron

- IC Shadow Cut:
 - Particles with positions in the geometry defined by the points below are rejected

Coor. \ Index	1	2	3	4	5	6	7	8	9	10	11
x [cm]	-11.15	-11.15	-23.10	-23.10	-10.30	9.91	23.73	23.73	12.30	12.30	-11.15
y [cm]	-26.07	-23.10	-12.85	11.50	22.95	22.95	13.10	-12.40	-22.36	-26.07	-26.07

Electron

• DC Fiducial Cut :

```
Bool_t eg6skim_pass1::isDCFiducialCut(Float_t X, Float_t Y, Int_t S) {
    // DC Fiducial Cut: Checks to see if the particle is in the fiducial region
    // for the DC
```

```
if (!isInsideIConDCShadow(X, Y)) {
```

using namespace TMath;

```
// Makes sure angle is within the left and right good relative angles depending on sector Double_t sectorAngL = ((S - 1.) + 1. / 3.) * Pi_{()} / 3.;
Double_t sectorAngR = ((S - 1.) - 1. / 3.) * Pi_{()} / 3.;
```

```
// If the DC hit was to the left, make sure it's between the edges of the lines defined by the tangent of the sector edges (sectorAngL and R) \,
```

```
if (S == 3 || S == 4 || S == 5 ){
    if (X * Tan(sectorAngL) < Y && Y < X * Tan(sectorAngR)){
        return true; }}</pre>
```

```
// If the DC hit was to the right
if (S == 1 || S == 2 || S == 6){
    if (X * Tan(sectorAngR) < Y && Y < X * Tan(sectorAngL)){
        return true;}}

return false;
}</pre>
```

Frank Thanh Cao (UConn)

Electron

- **CC Fiducial Cut** •
 - θ_{CC} and ϕ_{CC} are gotten through Vlassov's previous code

 - $\begin{aligned} \varphi_{Edge2}(\theta_{CC}) &< \varphi_{CC} < \varphi_{Edge1}(\theta_{CC}) \\ \bullet & \varphi_{Edge1}(\theta) = a_1 + b_1\theta + c_1\theta^2 + d_1\theta^3 + e_1\theta^4 + f_1\theta^5 \\ \bullet & \varphi_{Edge2}(\theta) = a_2 \setminus \operatorname{sqrt}\{(\theta b_2)/2\} \end{aligned}$

i /Parameters	a _i	b _i	c _i	d _i	e _i	f _i
1	6.332792e+01	1.105609e+01	-6.344957e-01	1.873895e-02	-2.762131e-04	1.604035e-06
2	20.00000e+00	43.00000e+00				

IC Photon

- Moller electron reduction Cut :
 - $E_{\gamma} < 0.300$ GeV are rejected
 - Particles $\theta(E_{\gamma})$ are rejected
 - Geometry is tabulated at the end

- IC Fiducial Cut (from FX's code) :
 - $\theta_{\gamma} > 14$ deg. are rejected
 - Particles hitting the edges of the IC are rejected
 - Particles outside of the fiducial region of the IC are rejected
 - Fiducial region is tabulated at the end
- IC Hot Channel Cut:
 - The segmented IC had some channels that were hot that needed to be rejected
 - The x- and y- coordinates of these are channels are tabulated at the end

Frank Thanh Cao (UConn)

March 30, 2017

IC Photon

- Moller Electron Reduction Cut:
 - Particles with positions in the geometry defined by the points below are rejected

Coor. \ Index	1	2	3	4	5	6
E [GeV]	0.00	0.00	0.30	0.30	0.80	0.00
θ [deg.]	0.00	15.00	15.00	6.00	0.00	0.00

IC Photon

• IC Fiducial Cut:

```
Bool_t eg6skim_pass1::isG_ICFiducialCut(Int_t ipartIC) {
  // from fx
  // inputs are xc,yc from ICPB
// this is to reject gammas near the inner/outer edges of the IC
static constfloat dx = 1.346; // cm
  static const float dy = 1.360;
  static const float nin = 3.25;
static const float nout = 10.75;
static const float root2 = sqrt(2);
   Double_t xx = xc[ipartIC];
   Double_t yy = yc[ipartIC];
   // INNER:
   if (fabs(xx) / dx)
   fabs(yy) / dy <= nin
                                    &&
   \begin{array}{l} fabs(xx \mid dx - yy \mid dy) <= nin * root2 \&\& \\ fabs(xx \mid dx + yy \mid dy) <= nin * root2 \end{array} 
     return false:
 // OUTER:
 if (fabs(xx) / dx) = nout
                                       fabs(\dot{y}y)/\dot{d}y = nout
  fabs(xx/dx-yy/dy) \ge nout * root2
  fabs (xx / dx + yy / dy) = nout * root2)
  return false;
   return true;
```

IC Photon

• IC Hot Channel Cut:

```
Bool_t eg6skim_pass1::isG_ICGoodChannel(Int_t ipartIC) {
  ///// Take out the hot channels in IC ///////
  Int_ticHitID = (statc[ipartIC] - statc[ipartIC] \% 10000) / 10000 - 1;
 // icHitlD : Hit ID in ICHB
Double_t ic_x = ich_xgl[icHitID]; // x coordinate in ICHB
  Double_t ic_y = ich_ygl[icHitID]; // y coordinate in ICHB
  // Below are the regions where we have Hot Channels in the IC
(bad)
  if ((-11.0 < ic_x \& ic_x < -10.3 \& -3.0 < ic_y \& ic_y < -2.2)
  (-5.8 < ic_x & ic_x < -5.1 & a_z - 8.5 < ic_y & ic_y < -7.9)
  (-1.7 < ic_x \& ic_x < -1.1 \& -11.3 < ic_y \& ic_y < -10.7)
  (-3.0 < ic_x \& ic_x < -2.3 \& -8.5 < ic_y \& ic_y < -7.9)
  (-7.5 < ic_x \&\& ic_x < -6.0 \&\& 10.5 < ic_y \&\& ic_y < 11.5 
  (-12.8 < ic_x & ic_x < -11.5 & -8.5 < ic_y & ic_y < -7.5)
  (3.9 < ic_x \& ic_x < 4.5 \& -14.1 < ic_y \& ic_y < -13.5)
 return false:
 return true;
```

Frank Thanh Cao (UConn)

<u>Helium</u>

- Vertex Cuts :
 - To ensure the ⁴He is coming from the RTPC, the vertex must be in the range:
 - $|z_{4He}| < 80.0 \text{ mm}$
 - To ensure the ⁴He is coming from an interaction with the electron:
 - $|z_{4He} z_e| < 20.0 \text{ mm}$
- Ionization Point Cuts:
 - The starting ionization point distance, sdist, must be in:
 - -3.0 < sdist < 2.0 mm
 - The ending ionization point distance, edist, must be within:
 - -2.0 < edist < 3.0 mm
- Track Reconstruction cut:
 - The fit of the trail of ionization points must be "good" enough:
 - $\chi^2 < 3.0$

Frank Thanh Cao (UConn)

March 30, 2017

Helium-4

Variable	Passes if	Units
z_4He	< 80.0	mm
z _{4He} - z _e	< 20.0	mm
sdist	\in (-3, 2)	mm
edist	\in (-2, 3)	mm
χ^2	< 3.0	

Frank Thanh Cao (UConn)

March 28, 2017

Coherent DVCS Kinematic Cuts

Variable	μ	σ	Units
$M_{\chi 0}{}^{2}$	1.39930e+01	1.61245e+00	GeV ²
$M_{\chi_1^2}$	-3.45128e-02	2.28247e-01	GeV ²
$M_{\chi_2}^{2}$	-2.98662e-03	9.28645e-03	GeV ²
$\Delta \phi$	1.86020e-01	4.64936e-01	deg.

Variable	Minimum	Maximum	Units
θ _{X1, γ}	0.00000e+00	2.00000e+00	deg.
E _{X2}	-0.45000e+00	0.50000e+00	GeV
P _T	0.00000e+00	0.15000e+00	GeV/c

Coherent DV π^0 **P Kinematic Cuts**

Variable	μ	σ	Units
$M_{\chi_0}{}^2$	1.39835e+01	1.33781e+00	GeV ²
$M_{\chi_1}^{2}$	-1.30346e-02	2.07791e-01	GeV ²
$M_{\chi_{2}}^{2}$	-2.31650e-03	8.65851e-03	GeV ²
$\Delta \phi$	1.41750e-01	3.84202e-01	deg.
E _{X2}	7.80328e-03	1.85770e-01	GeV
P _T	4.36619e-02	3.25254e-02	GeV/c

Variable	Minimum	Maximum	Units
$\theta_{X1, \pi^{4}0}$	0.00000e+00	2.50000e+00	deg.

Frank Thanh Cao (UConn)

March 28, 2017

Frank Thanh Cao (UConn)

Coherent π^0 Kinematic Binning

March 28, 2017

Coherent n Exclusivity Cuts

Analysis

 $\Delta \phi$

160

(e ⁴He η)

oh1_dPhi_e_eta_he4

Entries 151 Mean 0.275

Std Dev 1.271

 E_X

50

250

200

150

100

50

-0.2

(e ⁴He η)

0.2

Coherent n Exclusivity Cuts

<u>η Analysis</u>

Frank Thanh Cao (UConn)

March 28, 2017

Frank Thanh Cao (UConn)

<u>Coherent η Kinematic Binning</u>

March 28, 2017