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Hadron Tomography
The basic strategies using electron beams

• Deep-Inelastic Scattering (DIS)
→ 1D - Longitudinal parton momentum distribution

• Elastic Scattering
→ 2D - Transverse charge distribution integrated over all x

• Deeply Virtual Compton Scattering (DVCS)
→ 3D - Transverse quark distribution at fixed x

• Deeply Virtual Meson Production (DVMP)
→ 3D - Transverse gluon distribution at fixed x

x = fraction of

hadron’s LC

momentum carried by

parton

Key insight - G. Miller

FT is 2D (not 3D) yielding transverse charge distributions.

ρ⊥(b⊥) =

∫
d2q

(2π)2
eiq·b⊥F1(Q

2)

As x→ 1:

• proton - all momentum carried by u-quark at center
(positive)

• neutron - all momentum carried by d-quark at center
(negative)

Miller and Arrington, Phys.Rev. C78 (2008) 032201

neutron x > 0.23 is the dashed,
x < 0.23 is dotted
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Partonic Structure of Nuclei
Quark and gluon transverse distributions

What is the gluon radius of 4He?

• Is the gluon radius the same as the charge radius?

• Is the glue localized in nucleons or in the nucleus?

The answers to these questions may significantly guide the physics
and design of an EIC

Why this measurement is important now:
EIC’s Oomph factor and gluon saturation

• The longitudinal overlap of low-x gluons from different nuclei is
expected to increase the onset of gluon saturation

• However, if the gluons are highly localized, this effect is minimal
and gluon saturation will remain out of reach

• The design parameters of an EIC tuned for saturation physics is
counter to those for a nuclear tomography program.

• Knowing the transverse gluon distribution is important

x b

<x>=0.165
<x>=0.215
<x>=0.265

0 2 3 41

ρ

gqval

March 30, 2017 3 / 17



EMC Effect
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EMC Effect in DIS

• Is structure function modified?

• Significant even in 4He!

• Origin of effect remains unclear
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The ALERT Experiments
A comprehensive program to study nuclear effects

Coherent Processes on 4He

• 4He(e, e′ 4He γ)

• 4He(e, e′ 4He φ)

Explores the partonic structure of 4He
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γ∗

A
ALERT

CLAS12

φ

e e′

γ∗

A
ALERT

CLAS12

Incoherent processes on 4He and 2H

• 4He(e, e′γ p+3H)

• 4He(e, e′γ+3He)n

• 2H(e, e′γ + p)n

Identify medium modified nucleons

N

γ

e e′

p1

γ∗

ALERT

CLAS12

A− 1

d N

γ

e e′

γ∗

ALERT

CLAS12

N

DIS on 4He and 2H : Tagged EMC Ef-
fect

• 4He(e, e′+3H)X (proton DIS)

• 4He(e, e′+3He)X (neutron DIS)

• 2H(e, e′ + p)X (neutron DIS)

Test FSI and rescaling models

And many more channels for free
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Previous Experiment: CLAS EG6

Radial Time Projection Chamber
(RTPC)

• Response was slow (drift time)
• PID is insufficient
• Cannot provide trigger
• Rate limited (constantly

triggered for readout)

Coherent and incoherent DVCS results
M.Hattawy’s EG6 analysis

First exclusive coherent DVCS measurement on 4He
Incoherent DVCS measurement plagued by
kinematic uncertainties
→ need to tag spectators
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Proposed Setup: CLAS12 + ALERT
• Use CLAS12 to detect scattered electron, e′, and

forward scattered hadrons.

• A low energy recoil tracker (ALERT) will detect the
spectator recoil or coherently scattered nucleus

ALERT requirements

• Identify light ions: H, 2H, 3H, 3He, and 4He

• Detect the lowest momentum possible (close to
beamline)

• Handle high rates

• Provide independent trigger

• Survive high radiation environment
→ high luminosity

• ALERT will replace the CLAS12 silicon
vertex tracker (SVT) and the first layer
of micromegas.
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ALERT Design

Basic Design

• Detector will surround a ∼3 atm gas target cell
which is 6 mm in radius and constructed with
25 µm kapton walls

• Hyperbolic drift chamber with 10◦ stereo angle.

• Outer scintillator hodoscope for PID

Drift Chamber Design

• 2 mm wire separation

• 10◦ stereo angle

• Minimize material (windows/walls)

• Detects θ ∼ 30◦ to 170◦

Ongoing work led by IPN Orsay
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ALERT Design
Scintillator Hodoscope Design

• 2 cylindrical layers ∼30 cm long
1 Inner layer (thin) strips - 2 mm× 9 mm× 30 cm

SiPM connected to each end of the strip
2 Outer layer (thick) cells - 2 cm× 9 mm× 3 cm

Segmented along beam axis (10 outer per 1 inner layer)
SiPM readout attached to outer surface

• Good time resolution → need fast scint, fast SiPMs with good
resolution, and small segmentation of scintillator cells.

• 4He and 3He dominate the signals coming from inner layer
• 1H, 2H, and 3H will typically make it to the second layer depositing

most of their energy.

Basic Operating Principles

• By design, ALERT is blind to minimum-ionizing particles
(where the threshold can be tuned through the gas or
electronically)

• For coherent processes where the cross sections are low, so
we will compensate by running at the highest possible
luminosity with a high threshold, hence, we will cut out all
the high energy particles.
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ALERT Simulation
Full Geant4 Simulation

• Acceptances minimum momenta: 70 MeV/c for protons, 240 MeV/c for 4He

• Detailed scintillator photon yields and timing information → optimize geometry to provide the best PID

• Working on Kalman Filter based track reconstruction → optimize DC wire layout; Also get track dE/dx for
PID

• DC hit occupancies simulated - can operate comfortably at nominal CLAS12 luminosity
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Extracting Asymmetries and Ratios
An illustrative example

• Incoherent DVCS: 6 dimensional data (x, Q2, t, φ, Ps, θs)

• Coherent DVCS: 4 dimensional data (x, Q2, t, φ )

• Tagged EMC: 4 dimensional data (x, Q2, Ps, θs)

N

γ

e e′

p1

γ∗

ALERT

CLAS12

A− 1

As an example, here is how the beam spin asymmetry and off-forward EMC ratios are
formed for the 6-dimensional tagged DVCS proposal...
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Tagged DVCS Kinematics
6-dimensional binned asymmetries: x, Q2, t, φ, ps, θs
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DVCS Observables
Beam Spin Asymmetries

We will measure the DVCS BSA

ALU (φ) =
dσ↑(φ)− dσ↓(φ)

dσ↑(φ) + dσ↓(φ)

Extract the sinφ harmonic

Asinφ
LU =

1

π

∫ π

π
dφ sinφALU (φ) = αLU

Take bin x, Q2, t, Ps, θs. Extract harmonic content Now a 5 dimensional data set.
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Off-forward EMC Effect Ratios
Neutron data from 2H and 4He combined to form ratio

Rnα =
α
(4He)
n∗

α
(2H)
n

• Ratio is clean experimental quantity
• GPDs do not enter the analysis
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Projected Results: Forward and Off-forward EMC Ratios

Rescaling models

• It is impossible to differentiate x and Q2 rescaling with inclusive
measurements but they give very different signature in tagged measurements

• Comparison of 2H to 4He is particularly interesting
• Iso-scalers
• 4He is a light nuclei with a sizable EMC effect
• The two rescaling effects are cleanly separated by the comparison between the

two nuclei
• They complement each other in spectator momentum coverage

C. Ciofi degli Atti et al. Eur. Phys. J., vol. A5 (1999) 191
C. Ciofi degli Atti et al. Phys.Rev. C76 (2007) 055206
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4He Transverse Quark and Gluon Densities
Coherent scattering on 4He
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Summary
ALERT Experiments

• Comprehensive program to study QCD in Nuclei

• Measure the transverse quark and gluon distributions in 4He

• Pin down the origin of the EMC Effect

Critical pre-EIC physics

ALERT will provide important early insights for the EIC

ALERT Collaboration
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Backup

March 30, 2017 0 / 0



March 30, 2017 0 / 0



Coherent Extraction

| 〈Hg〉 |(t) ∝
√
dσL
dt

(t− tmin)
/dσL

dt
(0)

dσL
dt

(4He) ∝ |〈Hg〉|2

dσL
dt

=
1

(ε+ 1/R)Γ(Q2, xB, E)

d3σ

dQ2dxBdt

W (cos θH) =
3

4

[
(1− r0400) + (3r0400 − 1) cos2 θH

]
r0400 =

εR

1 + εR
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