

Deeply Virtual Compton Scattering off ⁴He:

New results and future perspectives

M. Hattawy

(On behalf of the CLAS collaboration)

NPWG - CLAS Collaboration Meeting (March 28-31, 2017)

DVCS off nuclei

Two DVCS channels are accessible with nuclear targets:

\Diamond Coherent DVCS: $e^{\text{-}} A \rightarrow e^{\text{-}} A \gamma$

- \rightarrow Study the partonic structure of the nucleus.
- → One chiral-even GPD ($H_A(x,\xi,t)$) is needed to parametrize the structure of the spinless nuclei (⁴He, ¹²C, ¹⁶O, ...).

$\diamondsuit Incoherent DVCS: e^{-} A \rightarrow e^{-} N \gamma$

- → The nucleus breaks and the DVCS takes place on a nucleon.
- → Study the partonic structure of the bound nucleons
 (4 chiral-even GPDs are needed to parametrize their structure).

flip nucleon spin

Factorization $x+\xi$ $H_A(x, \xi, t)$ $H_A(x, \xi, t)$ $t = \Delta^2$ Factorization

′کیץ^{*}(**q**)

e(k)

e'(k')

γ**(q')**

e'(k')

Nuclear spin-zero DVCS observables

The GPD H_A parametrizes the structure of the spinless nuclei (⁴He,¹²C ...)

$$\mathcal{H}_{A}(\xi,t) = Re(\mathcal{H}_{A}(\xi,t)) - i\pi Im(\mathcal{H}_{A}(\xi,t))$$

$$Im(\mathcal{H}_{A}(\xi,t)) = H_{A}(\xi,\xi,t) - H_{A}(-\xi,\xi,t)$$

$$Re(\mathcal{H}_{A}(\xi,t)) = \mathcal{P}\int_{0}^{1} dx[H_{A}(x,\xi,t) - H_{A}(-x,\xi,t)] \left[C^{+}(x,\xi)\right]$$

$$C^{+}(x,\xi) = \frac{1}{x-\xi} + \frac{1}{x+\xi}$$

$$\Rightarrow \text{ Beam-spin asymmetry } (\mathbf{A}_{LU}(\varphi)) : (+/-\text{ beam helicity})$$

$$A_{LU}(\phi) = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

$$= \frac{x_A(1 + \epsilon^2)^2}{y} s_1^{INT} \sin(\phi) \Big/ \Big[\sum_{n=0}^{n=2} c_n^{BH} \cos(n\phi) + \frac{x_A^2 t(1 + \epsilon^2)^2}{Q^2} P_1(\phi) P_2(\phi) c_0^{DVCS} + \frac{x_A(1 + \epsilon^2)^2}{y} \sum_{n=0}^{n=1} c_n^{INT} \cos(n\phi) \Big]$$

CLAS - E08-024 experimental Setup

$e^{-4}He \rightarrow e^{-}$ (⁴He/pX) γ

6 GeV, L. polarized

Beam polarization (P_B) = 83%

- CLAS:

- → Superconducting Torus magnet.
- \rightarrow 6 independent sectors:
 - \rightarrow DCs track charged particles.
 - → **CCs** separate e^{-/π^2} .
 - \rightarrow TOF Counters identify hadrons.
 - → ECs detect γ , e⁻ and n [8°,45°].
- **IC**: Improves γ detection acceptance [4°,14°].
- **RTPC:** Detects low energy nuclear recoils.
- **Solenoid:** Shields the detectors from Møller electrons. - Enables tracking in the RTPC.
- **Target:** ⁴He gas @ 6 atm, 293 K

Coherent DVCS events selection

We select **COHERENT** events which have:

♦ Only one good electron, at least one photon and only one good ⁴He.

◊ Eγ > 2 GeV and Q² > 1 GeV².
◊ Exclusivity cuts (3 sigmas).

- In **BLACK**, coherent events before all exclusivity cuts.
- In shaded, coherent DVCS events which pass all the other exclusivity cuts except the one on the quantity itself.

 e^4 He γ : Missing E [GeV]

 $e^4He\gamma$: Missing M^2 [GeV²/c⁴]

Coherent beam-spin asymmetries

• Due to statistical constraints, we construct 2D bins -t or x_B or Q^2 versus ϕ

[1] Off-shell: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.[2] A. Airapetian, et al., Phys Rev. C 81, 035202 (2010).

⁴<u>He CFF extraction</u>

7

Generalized EMC ratio

♦ Comparing the coherent asymmetries to the free proton ones:

- → Consistent with the enhancement predicted by the Impulse approximation model [V. Guezy et al., PRC 78 (2008) 025211]
- \rightarrow Does not match the inclusive measurement of HERMES.
- → Additional nuclear effects have to be taken into account in the nuclear spectral function calculations. [S. Liuti and K. Taneja. PRC 72 (2005) 032201]

Incoherent DVCS events selection

 \diamond Only one e⁻, at least 1 γ and only one good p. \diamond E γ > 2 GeV, W > 2 GeV/c² and Q² > 1 GeV².

♦ Exclusivity cuts (3 sigmas).

- In **BLACK**, coherent events before all exclusivity cuts.
- In shaded, coherent DVCS events which pass all the other exclusivity cuts except the one on the quantity itself.

e'p γ: Missing E [GeV]

Fermi motion effect on the incoherent

channel (1/2)

» t suffers from fermi motion
» t' suffers from radiative effects

Evaluate the size radiative effects from free proton dvcs data (E1-DVCS1&2)

Fermi motion effect on the incoherent channel (2/2)

- Induced systematic uncertainities based on free proton data

- EG6 incoherent DVCS A_{III} @ $\phi = 90^{\circ}$

bins in t

Generalized EMC ratio

♦ Comparing our measured incoherent asymmetries with the asymmetries measured in CLAS DVCS experiment on the proton.

 \diamond Scaling in Q² within the given error bars.

♦ The bound proton shows a lower asymmetry relative to the free one in the different bins in $x_{_{P}}$.

♦ At small -t, the bound proton shows lower asymmetry than the free one.♦ At high -t, the two asymmetries are compatible.

Future perspectives and proposals using "CLAS12 + ALERT" experimental setup

K. Hafidi, N. Baltzell, R. Dupre, M. Hattawy, W. Armstrong, Z. E. Meziani, M. Paolone

♦ CLAS–E08-024 experiment:

 \rightarrow 2D binning due to limited statistics and limited phase-space.

♦ We propose to measure:

- Partonic Structure of Light Nuclei.
- Tagged DVCS Off Light Nuclei
- Tagged EMC on Light Nuclei
- → CLAS12-ALERT setup will allow higher statistics and wider kinematical coverage
 - \rightarrow 3D binning
 - \rightarrow More precise CFF extractions.

Proposed experimental

setup:

CLAS12 detector

ALERT detector

- High luminosity & large acceptance.
- Measurement of deeply virtual exclusive,

semi-inclusive, and inclusive processes

- \rightarrow Can be included in the trigger.
- → Separate protons, deuterium, tritium, alpha, helium-3.

See W. Armestrong's talk for details

Summary and outlook

♦ CLAS – E08-024 experiment:

- → The first exclusive measurement of DVCS off ⁴He.
- → The coherent DVCS shows a stronger asymmetry than the free proton as was expected from theory.
- → We performed the first ever experimental extraction of the real and imaginary parts of the He-4 CFF.
- \rightarrow We extracted EMC ratios and compared them with theoretical predictions.
- → The bound proton has shown a different trend compared to the free one indicating the medium modifications of the GPDs.

♦ We are proposing a new generation nuclear physics experiment to extract quarks' and gluons' GPDs of He-4 using CLAS12 detector that will be upgraded with a low energy recoil tracker.

- >> Wider kinematical coverage and better statistics that will allow 3D binnings for both the DVCS and DVMP channels
- >> Will allow model independent extractions of the charge and the gluon densities of He-4.

Theoretical predictions of the EMC in 4He

On-shell calculations:

Off-shell calculations:

Nuclear DVCS measurements: HERMES

- The exclusivity is ensured via cut on the missing mass of $e\gamma X$ final state configuration.
- Coherent and incoherent separation depending on -t, i.e. coherent rich at small -t.
- Conclusions from HERMES: No nuclear-mass dependence has been observed.

In CLAS - E08-024, we measured EXCLUSIVELY the coherent and incoherent DVCS channels off ⁴He

$$A_{LU}^{sin} = \frac{1}{\pi} \int_0^{2\pi} d\phi \, \sin\phi \, A_{LU}(\phi)$$

[A. Airapetian, et al., Phys Rev. C 81 (2010) 035202]

He-4 CFF extraction

$$A_{LU}(\phi) = \frac{\alpha_0(\phi) \,\Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \,\Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$

$$\begin{aligned} \alpha_0(\phi) &= \frac{x_A(1+\varepsilon^2)^2}{y} S_{++}(1) \sin(\phi) \\ \alpha_1(\phi) &= c_0^{BH} + c_1^{BH} \cos(\phi) + c_2^{BH} \cos(2\phi) \\ \alpha_2(\phi) &= \frac{x_A(1+\varepsilon^2)^2}{y} \left(C_{++}(0) + C_{++}(1) \cos(\phi) \right) \\ \alpha_3(\phi) &= \frac{x_A^2 t (1+\varepsilon^2)^2}{y} \mathcal{P}_1(\phi) \mathcal{P}_2(\phi) \cdot 2 \frac{2-2y+y^2+\frac{\varepsilon^2}{2}y^2}{1+\varepsilon^2} \end{aligned}$$

Incoherent beam-spin asymmetries

- 2D bins -t or x_B or Q^2 versus φ .

- Fit ALU signals: $\alpha * \sin(\phi) / (1 + \beta * \cos(\phi))$

Q² of epy events

 $A_{\rm LU}^{\rm Incoh}(90^{\circ})$

[1] Off-shell: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.[2] A. Airapetian, et al., Phys Rev. C 81, 035202 (2010).

Incoherent DVCS events selection

♦ Only one e⁻, at least 1γ and only one good p. ♦ $E\gamma > 2$ GeV, W > 2 GeV/ c^2 and $Q^2 > 1$ GeV².

♦ Exclusivity cuts (3 sigmas).

Monte Carlo simulation

We use Monte Carlo for two goals:

- Understanding the behavior of each particle type in our detectors
- Calculate the acceptance ratio for the purpose of the π^0 background subtraction

♦ Simulation stages:

- **Event generator:** $e^{4}He\gamma$, $e^{4}He\pi^{0}$, $ep\gamma$ and $ep\pi^{0}$ events are generated in their measured phase space (Q^2 , x_B , -t, φ_h) following this parametrization of the cross section.
- Simulation (GSIM): GEANT3, describes the detectors' response to the different particles.
- **Smearing (GPP):** Makes the simulation more realistic by smearing the positions, energies and times.
- **Reconstruction (RECSIS):** (ADCs, TDCs) → physical quantities.

Background Subtraction

 \diamond With our kinematics, the main background comes from the exclusive π^0 channel,

$$e^4He \to e^4He\pi^0 \to e^4He\gamma\gamma \qquad ep \to ep\pi^0 \to ep\gamma\gamma$$

in which one photon from π^0 decay is detected and passes the DVCS selection.

 \diamond We combine real data with simulation to compute the contamination of π^0 to DVCS.

DVCS off He-4: Projected precisions

The statistical error bars are calculated for:

- 20 days at a luminosity of
 3.0 X 10³⁴ cm⁻²s⁻¹.
- 10 days at a luminosity of
 6 X 10³⁴ cm⁻²s⁻¹.

 $e^{-4}He \rightarrow e^{-4}He \gamma$

CFF H_₄ projections

Projected charge profile precisions

24

 $\frac{d\sigma_L}{dt} = \frac{1}{(\varepsilon + 1/R)\Gamma(Q^2, x_B, E)} \frac{d^3\sigma}{dQ^2 dx_B dt}$ R can be extracted from the angular distribution of the kaon decay In the phi helicity frame, assuming s-channel helicity conservation: $W(\cos\theta_H) = \frac{3}{4} \left[(1 - r_{00}^{04}) + (3r_{00}^{04} - 1)\cos^2\theta_H \right]$ Spin-density matrix coefficient: $r_{00}^{04} = \frac{\epsilon R}{1 + \epsilon R}$ Angle of kaon decay In phi helicity frame Angular Gluon density calculation: distribution $\rho_g(x,0,b_\perp) \to \int_0^\infty J_0(b\sqrt{t}) \sqrt{\frac{d\sigma_L}{dt}} \frac{\sqrt{t}}{2\pi} d\sqrt{t}$ amplitude Normalized cross-section $0.18 < x_{v_n} < 0.25$ $2.0 < O^2 < 3.0 \text{ GeV}^2$ 0.15 $\rho_g \, [fm^{-2}]$ 0.1 0.6 Input r₀₀⁰⁴: 0.26 0.4 Fit r₀₀⁰⁴: 0.27 $0.18 < x_{v_n} < 0.25$ 0.05 2.0 < Q² < 3.0 GeV² 0.2 <u>0</u>_1 -0.50 05 0 $K^+ \cos \theta$ [ϕ helicity frame] 2 3 4 5 'n b [fm]

φ production off He-4: Gluon profiles

 $e + {}^{4}He \rightarrow e' + {}^{4}He + \phi(K^{+} + K^{-})$

25

Design parameters of CLAS12

	Forward	Central
	detector	detector
Angular range		
Tracks	$5-40^{\circ}$	$35 - 125^{\circ}$
Photons	$2.5 - 40^{\circ}$	n.a.
Resolution		
$\delta p/p$	< 1% @ 5 GeV/c	5% @ 1.5 GeV/c
$\delta heta$	< 1 mr	< 10-20 mr
$\delta \phi$	< 3 mr	< 5 mr
Photon detection		
Energy	> 0.15 GeV	n.a.
$\delta heta$	4 mr @ 1 GeV	n.a.
Neutron detection		
Efficiency	< 0.7	under dev.
Particle ID		
e/π	Full range	n.a.
<i>π</i> /p	Full range	< 1.25 GeV/c
π/K	Full range	< 0.65 GeV/c
K/p	< 4 GeV/c	< 1 GeV/c
$\pi ightarrow \gamma \gamma$	Full range	n.a.
$\eta ightarrow \gamma \gamma$	Full range	n.a.

DVCS worldwide effort

JLAB		
Hall A	Hall B	
p,n,d -DVCS: X-sec	p-DVCS: BSA,LTSA, DSA, X-sec Helium-4: BSA	

CERN	
	COMPASS
p-DVCS: X-sec,BSA,BCA,	
	tTSA,lTSA,DSA

DESY		
HERMES	H1/ZEUS	
p-DVCS BSA,BCA, TTSA, LTSA,DSA	p-DVCS X-sec,BCA	

Promising future experiments with JLab upgrade and COMPASSII