

I D E A FUSION

Old Dominion University 2017

Validation of neutrino energy estimation using electron scattering data

Student Mariana Khachatryan Supervisor Lawrence Weinstein

Outline

The importance of energy reconstruction in neutrino oscillation experiments

□ Neutrino-nucleon Charged Current interactions

Different neutrino experiment detectors

Testing neutrino beam energy reconstruction methods with electron scattering CLAS e2a experiment data

Neutrino oscilations

KamLAND, PRL 100, 221803 (2008)

CC quasi-elastic scattering

Charged Current (CC) Weak interaction mediated by W^{\pm} bosons

$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

 g_W – coupling strength

Lepton scattering

$$E_{\nu}^{\text{kin}} = \frac{2M\varepsilon + 2ME_1 - m_l^2}{2(M - E_1 + |k_1| \cos \theta)}$$

 $\varepsilon \approx 20 \text{ MeV binding energy}$
M-nucleon mass
 $m_1 = 0$ outgoing lepton mass
 k_1 - lepton three momentum
 θ - lepton scattering angle
Scale the electron scattering data w
to have 'neutrino like' data!

MINERvA

3D view

Scintilation based detector Study: Neutrino oscilations nuclear effects nuclear structure functions.

Schematic view of MINERvA

MicroBoone 3D view

Liquid Argon Time Projection Chamber. Measure: ♦ Low energy neutrino cross sections

Schematic view of MicroBoNE

CLAS detector package

3D view

$oldsymbol{ heta}$ and $oldsymbol{arphi}$ distributions

⁴He(e,e'p), ¹²C, ³He 4.461 GeV e2a experiment data

Other data available : 3 He, 4 He, 2.2+4.4 GeV (e,e'p) skim 3 He, 4 He, C, Fe 1.1, 2.2 and 4.4 GeV

	Beam energy			
Target	1.161 GeV	2.261 GeV	4.461 GeV	Total triggers
³ He	141	217	186	544
⁴ He	-	333	445	778
¹² C	62	238	310	610
⁵⁶ Fe	-	23	30	53
CH2	10	35	21	66
Empty cell	19	69	33	121

Number of events with pions and protons

E2a ⁴He 4.461 GeV (e,e[']p) skim

Reconstructed (e,e') energy

 $E_{\rm rec}[GeV]$

Subtracting undetected pions

(e,e'p) E_{tot} vs (e,e') E_{rec}

Six P_{\perp} regions

0 GeV/c - 0.05 GeV/c 0.05 GeV/c - 0.1 GeV/c 0.1 GeV/c - 0.2 GeV/c 0.2 GeV/c - 0.3 GeV/c 0.3 GeV/c - 0.6 GeV/c 0.6 GeV/c and higher

E_{tot} and E_{rec} for ³He, ¹²C and ⁴He at 4.461 GeV

15

Conclusion

 Have obtained the beam energy using (e,e') and using (e,e'p).

Erec obtained using (e,e') isn't accurate as not all the events are quasi-elastic at these energies

 $\diamond E_{beam}$ is better reconstructed using (e,e'p)

The reconstruction can be further improved with a transverse momentum cut

 \diamond It works better for light nuclei

Backup slides

Neutrino oscilations

Flavor states are superpositions of mass states and vice versa.

+

0

Electron Neutrino Muon Neutrino

Electron Neutrino

Q^2 vs v

Q2 - four momentum transfer Nu - energy transfer

