Quark propagation and hadron formation in the nucleus

(results of CLAS EG2 experiment)

Hayk Hakobyan for UTFSM group

CLAS collaboration meeting March, 2017

Schematic diagram describing semi-inclusive Deep Inelastic Scattering of a lepton off a nucleon

Experimental Variables

- energy transferred by the electron, = initial energy of struck quark, (2 ~ 4.5) GeV here
- Q probe, (1 ~ 4) GeV² here
- z_h energy fraction carried by hadron; 0< z_h <1
- p_T hadron momentum transverse to virtual photon direction
- Φ hadron azimuthal angle to virtual photon direction

E_{BEAM}=5 GeV (CLAS)

Experimental details

Rohacell foam scattering chamber

EG2 Experiment target in GEANT3 Solid (C, Al, Fe, Sn, Pb) target simultaneously with deuterium target

Liquid D

Hadronic multiplicity ratio

$$R_{M}^{h}(z,\nu,p_{T}^{2},Q^{2},\phi) = \frac{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{A}}{\left\{\frac{N_{h}^{DIS}(z,\nu,p_{T}^{2},Q^{2},\phi)}{N_{e}^{DIS}(\nu,Q^{2})}\right\}_{D}}$$

Data analysis procedure

- Particle Identification Scheme for electrons and pions. Fiducial Cuts.
- PYTHIA 6.319 Adaptation to the EG2 Experiment phase-space.
- EG2 Target implementation in the GSIM.
- Acceptance Correction in 5 dimensional binning
- (up to 3% correction on Multiplicity Ratio).
- Radiative corrections using HAPRAD2 (up to 3% correction on Multiplicity Ratio)..
- Momentum correction.

3 pions 1 dimensional Multiplicity Ratios distributions paper

Coordination – William Brooks

Positive Pions – Raphael Dupre, Hayk Hakobyan, Rodrigo Mendez

Negative Pions – Raphael Dupre, Ahmed El Alaoui

Neutral Pions – Taiysia Mineeva, Orlando Soto

Two analysis notes are under review

Integrated distribution comparison between Raphael and Hayk analysis

Multiplicity Ratio in function of z

Possible sources for discrepancies

- Different dimensional binning in acceptance correction procedure (5 dim. - Hayk (up to 3% correction) & 4 dim. Raphael (10% correction))
- Tighter particle ID cuts in the case of Raphael's analysis for electrons and for pions.
- Different approaches in pion identification: $\Delta t - Hayk \& \Delta \beta - Raphael$
- Raphael doesn't have the Radiative Corrections implemented yet.
- Hayk doesn't have Isospin correction implemented

Fitting function:
$$f(\varphi_{q\pi^{+}}) = A + B\cos(\varphi_{q\pi^{+}}) + C\cos(2\cdot\varphi_{q\pi^{+}})$$
 BAD

Radiative corrections with HAPRAD2

Radiative corrections with HAPRAD2

Correction factor for phi

Further pi+ multi-bin publications

Transverse momentum dependence on 1/3 of nuclear mass number (all together in 24 kinematical region)

Acceptance correcion less than 14 %

CLAS Data: binning

Multiplicity Ratio Dependence on $Z_{\rm h}$ in different Q^2 and ν bins

Multiplicity Ratio Dependence on ν in different Q^2 and Z_h bins

Multiplicity Ratio Dependence on Q^2 in different $Z_{\rm h}$ and ν bins

Cronin effect in different $v \sqcup Q$ (0.4< Z^h <0.7) kinematical regions

J.W. Cronin et al, Production of hadrons with large transverse momentum at 200 GeV, 300 GeV, and 400 GeV. Phys. Rev., D11:3105, 1975.

Cronin Effect – Dependence on $A^{1/3}$, x_B , and Q^2

