

On the Mechanism of Niobium Electropolishing: Some effects of Gravity and Geometry

7th SRF Materials Workshop
July 16-17, 2012
Thomas Jefferson National
Accelerator Facility
Newport News, VA

This work supported by
United States
Department of Energy
Grant DE-SC0004217

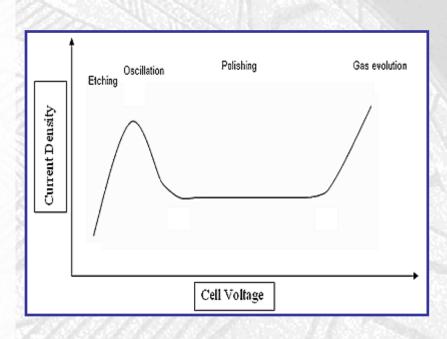
Ashwini Chandra

M.D. Sumption, E.W. Collings

G.S. Frankel

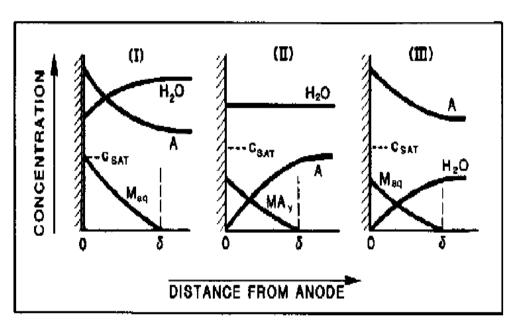
Nb coupons L Cooley, FNAL

Motivation


- Surface defects like pits, protrusions, and grain boundaries are detrimental to the performance of SRF cavities
- Electropolishing is so far the best technique to get a high quality surface finish
- The electropolishing mechanism for niobium is not very well understood, specially the association of pits with the EBW region
- Interesting to look at the <u>interface between pure</u> <u>electrochemistry</u>, and its realization in cavity work

Electropolishing Fundamentals

- EP occurs when the metal surface of interest is made anodic (+) in an appropriate solution
- The surface roughness of the finish is much less than that achieved with mechanical polishing
- The I-V (polarization) curve has etching, oscillation, plateau, and gas evolution regions, EP is carried out in the plateau region
- The current density plateau is observed because of mass transport limitation


A typical electropolishing polarization curve

Possible Mechanisms

Possible mass transport mechanisms¹

$$i_L = nFD(C_s - C_b)/\delta$$

i_I = Limiting current density

D = Diffusion coefficient of species involved

 C_s = Surface conc

 $C_h = Bulk conc$

Salt film metal ion saturation

Water Acceptor ion transport transport limitation limitation

1. D.Landolt, Electrochimica Acta, 32,1 (1987)

Department of Materials Science & Engineering

Probable Reactions Occurring at the Electrodes

At Working Electrode:

Travel to counter electrode and react with e- from Al to form H

Travel to (1) Nb oxidizes circuit via

species

(2) HF reacts with oxide to give Nb-F

$$2 \text{ Nb} + 5 \text{ H}_2\text{O} \rightarrow \text{Nb}_2\text{O}_5 + 10 \text{ H}^+ + 10 \text{e}^-$$

$$Nb_2O_5 + HF \longrightarrow H_2NbOF_5 + HNbF_6 + NbF_5 + 3 H_2O$$

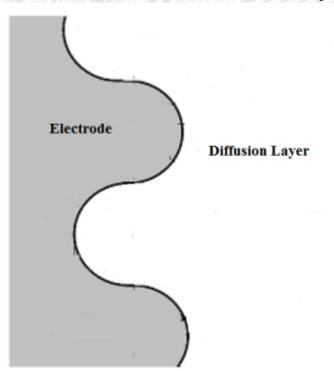
$$NbF_{5} + (SO_{3}, H_{2}O) \longrightarrow NbF_{3}(SO_{3}F)_{2} . 2H_{2}O + Nb_{2}O(SO_{4})_{4} + S_{2}O_{5}F_{2}$$

$$+ \text{sulfuric}$$
react

Niobium is oxidized to niobium oxide which then dissolves to form niobium fluoride, oxofluoride species, fluorosulfate, oxysulfate and pyrosulfurylfluoride in the presence of sulfuric acid and hydrofluoric acid.

At Counter Electrode:

$$2 H^{+} + 2e^{-} \longrightarrow H_{2}$$


F.Eozenou, A.Aspart, C.Antoine, and B.Maliki, CARE Report 06-10-SRF. EU Contract number RII3-CT-2003-506395

Electropolishing Effect

In any case, the current flow difference in thick and thin areas causes the polishing occur

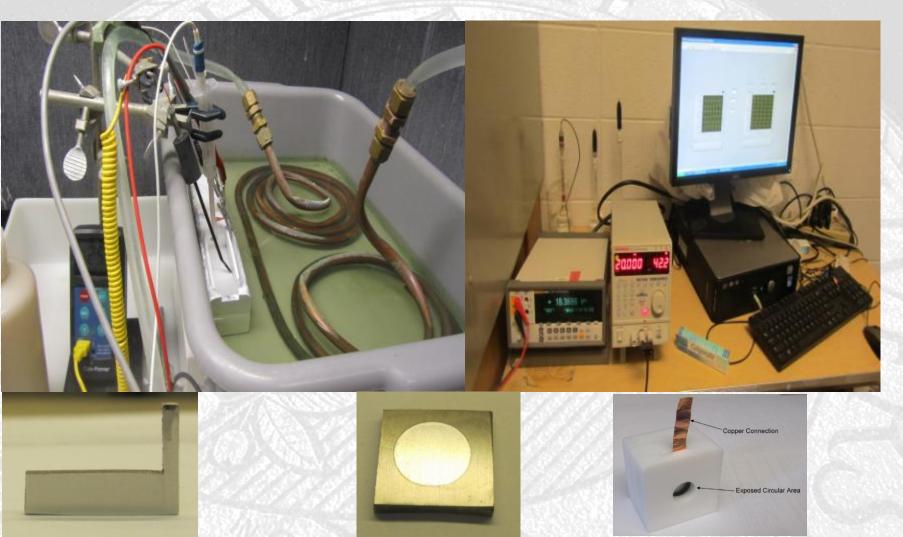
$$i_L = nFD(C_s - C_b)/\delta$$

Bulk Electrolyte

- •Diffusion layer thickness (δ) is different over protrusions and valleys.
- •Dissolution current density over protrusions is higher than in valley, resulting in leveling effect

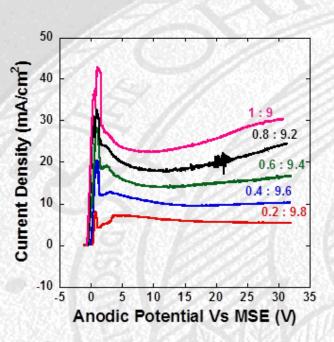
Our Schematic Bath for Nb EP

- Working Electrode: High purity polycrystalline Nb (99.999%)
- Counter Electrode: High purity AI (99.99%)
- Reference Electrode: mercurous sulfate electrode (MSE)
- Electrolyte: HF(48%)+
 H₂SO₄(96%) in 1:9 vol ratio

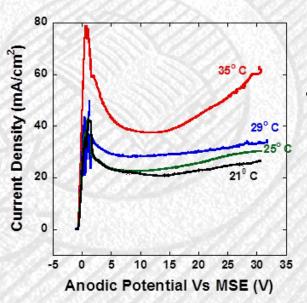

Fig: Schematic of the experimental setup.

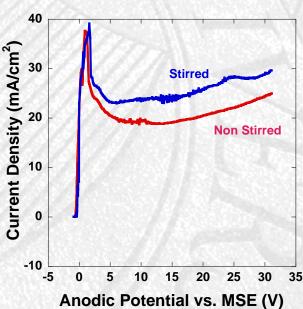
7th SRF Materials Workshop

Experimental Setup


7th SRF Materials Workshop July 16-17, 2012 Thomas Jefferson National Accelerator Facility Newport News, VA

Department of Materials Science & Engineering

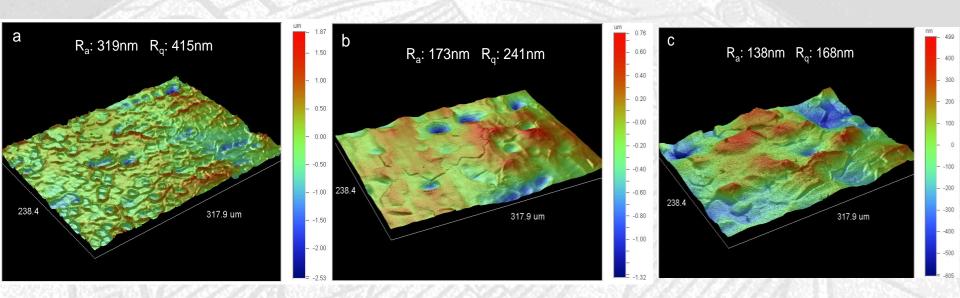

Replicating Acid Ratio/Temperature, and stirring results in our set-up


Effect of HF:H2SO4 ratio

By know well known effect of acid ratios, T, and agitation

Effect of temperature

Effect of bath agitation


Note: Effect of [F-] supports acceptor limited model

Verification of Evolution of surface roughness with EP time

V= 15V, T= 26C, HF: $H_2SO_4 \rightarrow 1:9$

EP time: 2 h EP time: 4 h EP time: 6 h

Surface changes from scalloped appearance after 2 h of electropolishing to a relatively smoother surface after 6 h of polishing.

A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities
Hui Tiana,b, Guilhem Ribeill a,c, Chen Xub, Charles E. Reecea, Michael J. Kelleya,b,*

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 123501 (2011)

Enhanced characterization of niobium surface topography

Chen Xu, 1,2 Hui Tian, 1 Charles E. Reece, 1 and Michael J. Kelley 1,2

7th SRF Materials Workshop July 16-17, 2012 Thomas Jefferson National Accelerator Facility Newport News, VA

Fluorine diffusion limited mass transport control

What's controlling process?

Proceedings of PAC09, Vancouver, BC, Canada

WE5PFP058

BASIC ELECTROPOLISHING PROCESS RESEARCH AND DEVELOPMENT IN SUPPORT OF IMPROVED RELIABLE PERFORMANCE SRF CAVITIES FOR THE FUTURE ACCELRATORS

H. Tian^{‡*}, M. J. Kelley^{‡*}, C. E. Reece[‡]

[‡] Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, U.S.A.

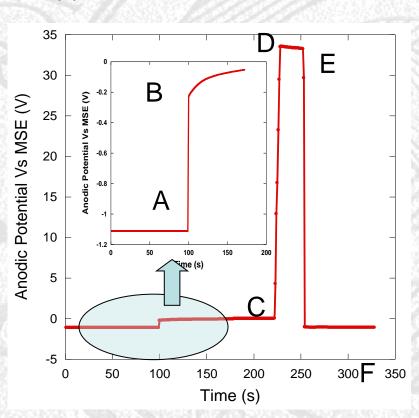
^{*}Applied Science Dept., College of William and Mary, Williamsburg, VA 23185, U.S.A.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 083502 (2010)

Evaluation of the diffusion coefficient of fluorine during the electropolishing of niobium

Hui Tian* and Charles E. Reece

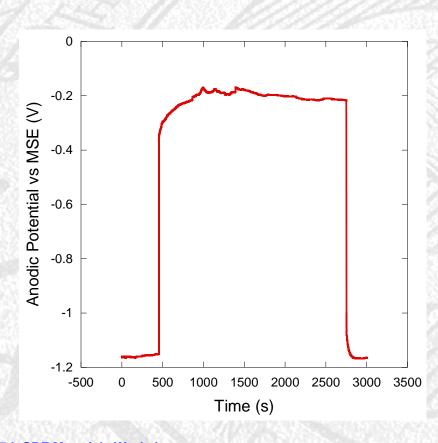
Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA (Received 30 November 2009; published 25 August 2010)



Potential Transients

Galvanostatic experiments help identify EP mechanism.

Application of Current at or Above Limiting Current Density Value


- Current switched on at A and switched off at E
- AB: Ohmic overpotential and rapid charging of double layer
- BC: Activation and concentration overpotential
- CD: Potential spike due to fluoride ion concentration going to zero at electrode surface

Potential Transient

Application of Current Below Limiting Current Density Value

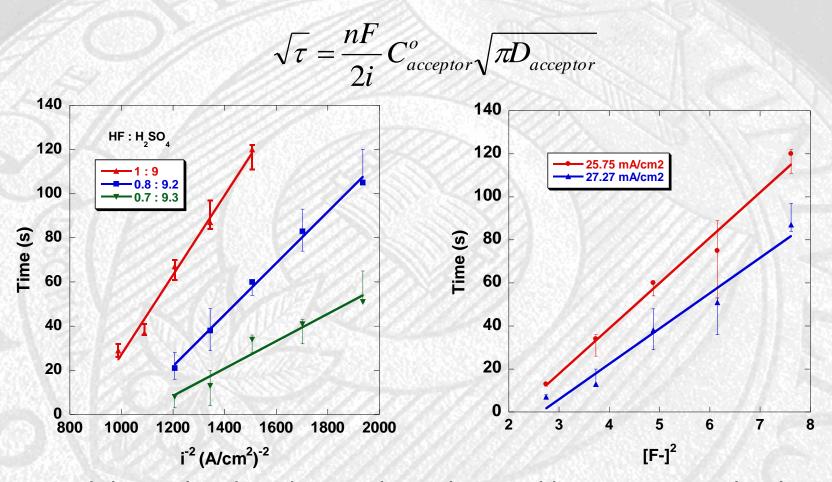
- Huge spike in potential not obtained.
- Fluoride ion concentration at surface does not fall to zero.

Potential Transients to Identify the Mechanism Involved

 Sand's equation describes time to reach a particular surface concentration for semi-infinite 1-D diffusion:

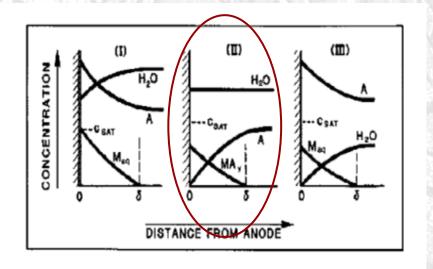
$$\sqrt{\tau} = \frac{nF}{2i} C_{acceptor}^{o} \sqrt{\pi D_{acceptor}}$$

τ - transient time at which potential spikes


Coacceptor - concentration of acceptor species in bulk electrolyte

D_{acceptor} - diffusion coefficient of acceptor species

Effect of Current Density and Acceptor Ion Concentration on the Induction Time

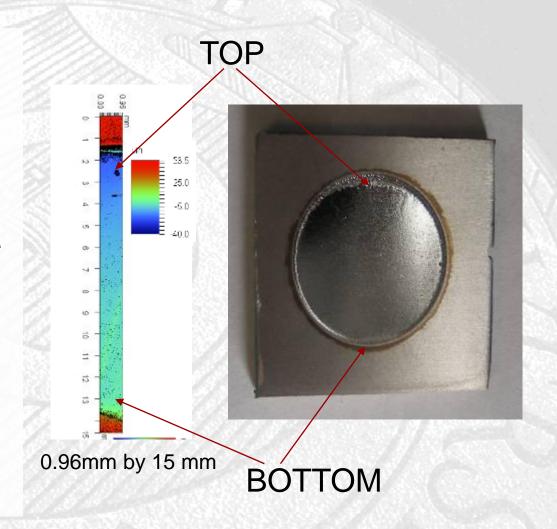

Expected dependencies observed consistent with acceptor mechanism

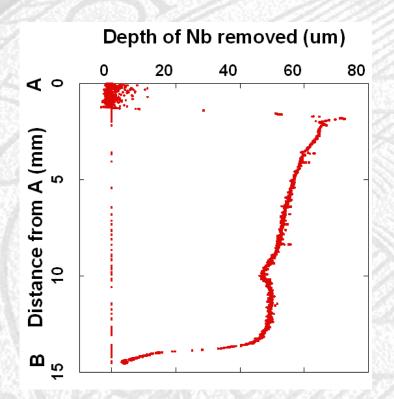
Evidence of Possible Gravity-driven Convective Effects

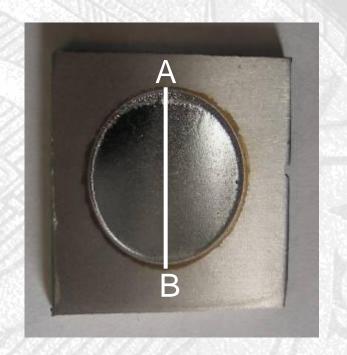
- Visual evidence of some form of viscous layer formation.
- Bluish-green colored layer which vanishes as soon as the power supply is turned off.

Evidence of the presence of surface film while Niobium electropolishing

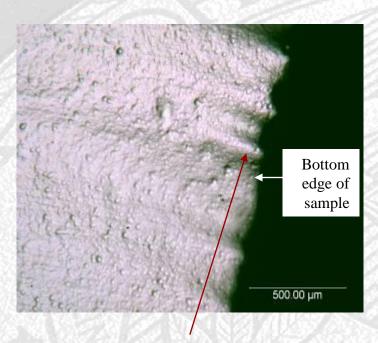
- A mass transport limited current plateau is necessary for electropolishing to take place
- There are evidences of some form of film formation on the surface through which there is diffusion limited transport of ions involved in polishing mechanism
- The surface film formed is soluble and dissolves in the electrolyte on switching off the current


Surface Film formed during electropolishing

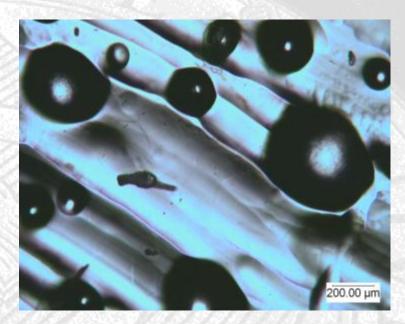

Evidence of the presence of surface film while niobium electropolishing


- There is an effect of gravity on the film
- Thinner film at the top of the sample because of hydrodynamics
- Higher dissolution rate at the top of the sample

Evidence of Possible Gravity-Convective Effects



 Natural, gravity driven convection results in thinner diffusion layer at top of sample, hence higher dissolution rate



Evidence of Possible Convective Effects

Ridges close to bottom edge of sample due to convection caused by dissolution products (sliding of the film under gravity)

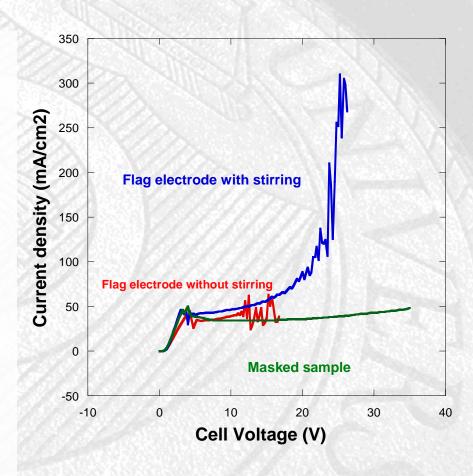
- Pits at surface of flag electrode that was facing down.
- Possibly: Gravity + convection of film prevented the formation of a stable film and hence pitting instead of electropolishing
- Selective dissolution resulted in pitting

Surface film, gravity, convective effects and EP rate for EP "face up" and vertical Flag

- EP rate should depend on film thickness
- Film is weakly held on and may
- The EP bath on top softom surfaces, respectively

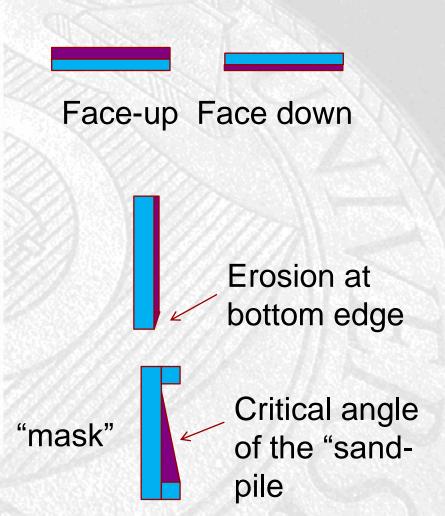
 The face up configuration (blue) had a very low current density and polishing rate (thick film)

 The vertical configuration is a relatively him is sity and points.


I vs t for EP done at 15V for 2 hours at 26°C

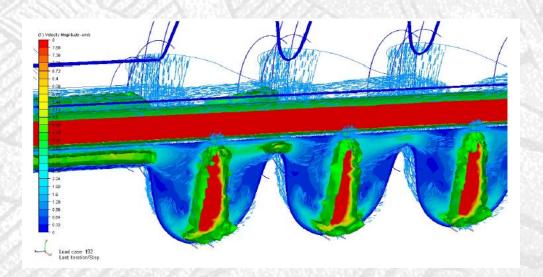
Surface film and polarization curve instability ("noise") during niobium electropolishing of <u>VERTICAL</u> flag

- Film thickness increases with the applied potential till it falls under its own weight
- Formation and re-dissolution of the film causes current oscillation – may well be chaotic (in the physics sense)
- Stirring causes the film to remain thin, weight could be supported till relatively higher potential
- No oscillations in case of electropolishing of masked sample due to controlled hydrodynamics at the surface



Surface (viscous) film, gravity, and EP rate for EP "face up" and "face down"

- Assume weakly adhering surface film
- Gravity assist in "face up" mode leads to thick films
- Gravity "attack" in "face down" mode leads to thin films
- Un-masked vertical films may show preferential attack at bottom edges
- Masked vertical films extra support for film at bottom edge


How will this play out in a cavity as it is polished?

 Will topology of the surface be an issue in any gravity and convection moderated effects?

HYDRODYNAMIC THERMAL MODELING OF 9-CELL ILC CAVITY ELECTROPOLISHING AND IMPLICATIONS FOR IMPROVING THE EP PROCESS *

Charles E. Reece[#], Jun Ortega[‡], and John Mammosser[†]
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

[‡]Blue Ridge Numerics, Charlottesville, VA 22911

Summary-Conclusions

- Set up made for EP under very controlled temperature conditions
- Standard Temperature, acid, surface roughness results demonstrated with our set-up
- Galvanostatic experiments suggest that mechanism controlling EP of Nb is transport of fluoride ions to surface.
- Natural convection and gravity effects seem to be present how important are these?

Ongoing work

- EP for Nb samples with welds
- As-received and samples with weld bump removed
- Samples of both types in different orientations and convection conditions to investigate possible film/gravity effects
- Localized EP across the welded regions and the HAZ

