Low Field Quench, HAZ Pits and Strain in a Prototype Cavity for the European XFEL

Roy Crooks
Black Laboratories, L.L.C.
Newport News, Virginia

7th SRF Materials Workshop

July 16-17, 2012

Thomas Jefferson National Accelerator Facility

Newport News, VA

Analysis of results from:

W. Singer, X. Singer, S. Aderhold, A. Ermakov, and K. Twarowski, R. Crooks, M. Hoss, F. Schölz, and B. Spaniol; "Surface investigation on prototype cavities for the European X-ray Free Electron Laser," PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 050702 (2011).

Overview

- Some SRF Cavities manufactured for the European XFEL showed thermal breakdown without field emission a low accelerating gradients
- Thermometry indicated hot spots in the equator weld region
- A hot spot region from one cavity, Z111 (17 MV/m quench), was removed by dry, slow speed, hole saw milling and examined by Scanning Electron Microscopy and Electron Backscattered Diffraction
- Comments on Deep-drawing Strain, HAZ and Pits
- Correlations were made between stored strain energy and pits in hot spot sample, use of GROD for relative dislocation density

Treatment of Z111:

- > 100 µm removed by EP
- ~10 μm removed by BCP
- 120°C bake
- rf testing at DESY with thermometry
- hot spot removal (X. Singer)

Background: Deep Drawing Strain

Mark III CEBAF Cavity

95% hit rate, 560,200 data points, 1 μm spatial resolution

~ 20% strain

Background: AR EP Sheet Compared to Deep Drawing Strain at Equator

AR

EP

Deep-drawn Cavity Equator

High strain removed by welding?

How much strain? lattice curvature ~ 1°/µm

EBSD GROD Map 500 μm from interior, 3 mm from lip

~ 20% strain

0.3 μm spatial resolution

EBSD

Dislocation

Edge

interstitial site

Background: Equator welds, HAZ pits and RRR drop

HAZ exposed to high T

Quench related to topography (pits)?

K. Watanabe, Recent Inspection Results by Kyoto-Camera, in TESLA Technology Collaboration Meeting. 2008: New Delhi, India.

Low RRR related to HAZ?

Diffusion of interstitials to dislocation sinks?
During welding?
During ep?

Oxygen lowers Tc and Hc.

Other impurities?

HAZ pit and "pocket of strain" in Z111

Pit about 2 mm within HAZ

Strain region part of larger grain, no high angle g.b. > 15°

How much strain? lattice curvature ~ 3°/μm

(greater than as- formed data)

200 x 200 μm, 0.5 μm resolution

3DAP Sample (Fe alloy)

high dislocation density maintained

J. Wilde, et al., Scripta materiala, 43 (2000) 39.

Conclusions and Conjecture

- Correlation found between low Eacc quench, hot spot, pit and strain
- Pocket of high dislocation density within pit in HAZ
 - "left behind" in (> 1000°C) recrystallization of HAZ
 - dislocations are sinks for interstitials
 - high resolution (3DAP?) study appropriate to verify dislocation atmospheres, interstitial concentration, chemistry
- Do dislocation atmospheres stabilize dislocations and inhibit recrystallization?
 - questions of diffusion, recovery and recrystallization rates during a brief thermal excursion
- Hot spot due to impurity concentration rather than topography?
- > 100 µm removed by EP ~10 µm removed by BCP 120°C bake

~ 80 µm diameter

~ 10 µm deep