Hall-A Transversity Experiment

Kalyan Allada

Hall-A Postdoctoral Associate

Jefferson Lab S&T Review, May 9-11, 2012

- PhD (Physics), University of Kentucky (2010)
 - Thesis: Hall-A neutron transversity experiment
- Hall-A Post-doctoral Associate
 - Analysis of Hall-A Transversity experiment data
 - Working on g2p experiment (currently taking data in Hall-A)
 - Co-spokesperson for 12 GeV proton transversity experiment in Hall-A

Outline

- Nucleon spin structure and transversity
- Semi-Inclusive DIS and TMDs
- 6 GeV transversity experiment in Hall-A
- Polarized SIDIS measurements using SoLID at 12 GeV

Nucleon Spin Structure

- Leading twist parton distribution functions:
 - Unpolarized: $f_{I}(x)$ (very well known)
 - Longitudinally polarized: $g_{1}(x)$ (well known)
 - Transversity: $h_{1}(x)$ (least known)
- Proton spin puzzle:
 - only ~30% from quark spin
- Orbital angular momentum plays important role
- Transverse Momentum Dependent PDFs
 - Quark transverse momentum(\mathbf{k}_{T}) un-integrated
 - Semi-Inclusive DIS: Study TMDs and quark OAM

Measured using DIS

Semi-Inclusive Deep Inelastic Scattering

- Ideal tool to study TMDs
- Detect scattered electron in coincidence with hadron
- Flavor tagging via fragmentation function
- Single (SSA) and double (DSA) Spin Asymmetries

SIDIS Cross-section

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_h\,dP_{h\perp}^2} \\ &= \frac{\alpha^2}{x\,y\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} + \varepsilon\,\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} \\ &+ \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} + S_L\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\,\sin(2\phi_h)\,F_{UL}^{\sin^2\phi_h}\right] \\ &+ S_L\,\lambda_e\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ &+ S_T\left[\sin(\phi_h - \phi_S)\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\,F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) + \varepsilon\,\sin(\phi_h + \phi_S)\,F_{UT}^{\sin(\phi_h + \phi_S)} \\ &+ \varepsilon\,\sin(3\phi_h - \phi_S)\,F_{UT}^{\sin(\Theta_h - \phi_S)} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S)\,F_{UT}^{\sin(2\phi_h - \phi_S)}\right] + S_T\lambda_e\left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

SIDIS Cross-section

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} \\ &= \frac{\alpha^2}{x \, y \, Q^2} \frac{y^2}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \\ &+ \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h \, F_{LU}^{\sin \phi_h} + S_L \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_L \, \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ &+ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} \\ &+ \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S \, F_{UT}^{\sin \phi_S} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] + S_T \, \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S \, F_{UT}^{\cos \phi_S} + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

Leading Twist Transverse Momentum Dependent PDFs

*f*₁, *g*_{1L} and *h*₁ are *k*_T integrated PDFs
Rest are *k*_T dependent PDFs

Leading Twist Transverse Momentum Dependent PDFs

Probed by E06-010 (6 GeV Transversity Expt.) *f*₁, *g*_{1L} and *h*₁ are *k*_T integrated PDFs
Rest are *k*_T dependent PDFs

Collins and Sivers Effect

Collins Effect

 $\sigma_{UT}^{SIDIS} \propto \sin(\phi_h + \phi_S) \ h_1 \otimes H_1^{\perp}$

Transversely polarized quark generates left-right asymmetry during fragmentation

- Valence *x* behavior
- First moment gives nucleon tensor charge (calculable in LQCD)

Sivers Effect

 $\sigma_{UT}^{SIDIS} \propto \sin(\phi_h - \phi_S) f_{1T}^{\perp} \otimes D_1$

Correlation between transverse spin of nucleon with transverse momentum of the quark

- Intrinsically asymmetric distribution of quarks $(f_{_{1T}})$
- Observed via Final State Interaction (FSI)

Transverse Spin Observables

Separation of various terms using azimuthal angular dependence

- Collins Moment $\sigma_{UT}^{SIDIS} \propto \sin(\phi_h + \phi_S) \ h_1 \otimes H_1^{\perp}$
- Sivers Moment

 $\sigma_{UT}^{SIDIS} \propto \sin(\phi_h - \phi_S) f_{1T}^{\perp} \otimes D_1$

• Pretzelosity

 $\sigma_{UT}^{SIDIS} \propto \sin(3\phi_h - \phi_S) \ h_{1T}^{\perp} \otimes H_1^{\perp}$

• Worm-gear (DSA)

 $\sigma_{LT}^{SIDIS} \propto \cos(\phi_h - \phi_S) \ g_{1T} \otimes D_1$

- Rotate target spin to increase angular coverage of ϕ_s
- Automatic target spin flip every 20min

9

6 GeV Transversity Experiment

- First measurement of SSA and DSA on transversely polarized ³He target (effective neutron target)
- Run period: Oct 2008 Feb 2009
- 7 PhD graduates
- Two PRL publications (working on other physics results)
- Polarized ³He target ($P_{target} \sim 64\%$)
- Beam energy : 5.9 GeV
- BigBite at 30[°] as Electron Arm
 - $p_e = 0.8 2.2 \text{ GeV/c}$
- HRSL at 16[°] as Hadron Arm
 - $p_{h} = 2.35 \text{ GeV/c}$
- Target spin orientations: up-down and left-right (increase angular coverage)
- Automatic target spin-flip every 20 mins.

Thomas Jefferson National Accelerator Facility

Results

- Collins and Sivers Moments:
 - $-\pi$ moments consistent with zero
 - π^+ Sivers favor negative sign (positive for HERMES/COMPASS proton data)
- Neutron A_{LT} :
 - Consistent with model in sign
 - But suggest larger asymmetry

 $< Q^2 > \sim 2.0 \text{ GeV}^2$ < z > = 0.5

Thomas Jefferson National Accelerator Facility

11

Future Measurements of Transversity

- Super BigBite in Hall-A
- SoLID Spectrometer in Hall-A
- CLAS 12 Polarized SIDIS program
- Projections with an EIC

SoLID - A New Device in Hall-A

Precision 4D (x,Q²,z, P_T) mapping of single and double spin asymmetries using SIDIS on polarized neutron and proton targets

- Beam energy = 11 GeV and 8.8 GeV
- High Luminosities:
 - ³He (neutron) : 10³⁶ N/cm²/s
 - NH_3 (proton) : 10^{35} N/cm²/s
- Full azimuthal angle coverage
 - Crucial for 4D mapping of asymmetries Reduces systematics when extracting various moments
- Tracking with GEMs (6 GEM planes)
- Electron Identification:
 - EM calorimeter for large angle and high momentum
 - EM calorimeter and light gas Cerenkov for forward angle
- Pion identification:
 - Heavy Gas Cerenkov and TOF (Multi-Resistive Plate Chamber)

• Fast pipeline electronics for DAQ

13

Precision SIDIS Experiments at 12 GeV with SoLID and Transversely Polarized Target

- Approved SIDIS experiments with SoLID
 - E12-10-006: SSA and DSA measurement using transversely polarized ³He target (Spokespersons: J.P.Chen, H. Gao, X. Jiang, J-C.Peng, X. Qian)
- Conditionally approved Experiment
 - PR12-11-108: SSA and DSA measurement using transversely polarized NH₃ target (Spokespersons: K. Allada, J.P. Chen, H. Gao, X. Li, Z.E. Meziani)

Other proposed measurements at JLab 12 GeV:

Hall-A: SIDIS using Super BigBite and transversely polarized ³He target
 Hall-B: SIDIS using CLAS12 and transversely polarized HD-Ice target

E06-010 vs 12 GeV SoLID Measurement

- 6 GeV vs 11 GeV kinematics
- Two regions in SoLID
 - Forward region $(6.6^{\circ} 12^{\circ})$
 - Large angle region $(14.5^{\circ} 22^{\circ})$
- Wider phase space coverage for proposed SoLID measurements
- Necessary for 4D binning of SSA/DSA in SIDIS

•
$$x_B = 0.05 - 0.68$$

•
$$Q^2 = 1.0 - 9.0 \, (\text{GeV/c})^2$$

•
$$P_T = 0 - 1.8 \text{ GeV/c}$$

•
$$z = 0.3 - 0.7$$

• W > 2.3 GeV

Jefferson Lab

15

Projected Results

Collins Moment

Sivers Moment

- Moments in one bin of Q^2 and z
- Cover large *x* region
- Proton and neutron data
 - Constrains both u and d-quark tensor charge (test lattice QCD results)

- Help precise extraction of Sivers DF
- QCD predicted sign reversal betwen SIDIS and Drell-Yan process (RHIC, FANL, etc..)

$$\left.f_{1T}^{\perp q}\right|_{SIDIS} = -\left.f_{1T}^{\perp q}\right|_{D-Y}$$

Multi-dimensional Binning

Impact of 12 GeV Measurement With SoLID

- Clean extraction of TMDs precision comparable to longitudinal spin g_1
- Covers large x range important for extracting transversity (and thus tensor charge)

A. Prokudin

- Only Sivers function is shown
- Current experimental uncertainties in large light grey band
- Projected uncertainties in dark grey band

Projections with an EIC

Three Options:

- $\sqrt{s} = 140 \text{ GeV} (20 \times 250)$ 50 GeV (11 X 60) 15 GeV (3 X 20)
- Integrated Luminosity in each case :
 30 fb⁻¹

(about 1 month running with $10^{34}/\text{cm}^2/\text{s}$)

- 0.8 > y > 0.05
- Polarization : 70 %
- Overall efficiency : 50%
- z: 12 bins, 0.2 0.8
- $P_{T} : 5 \text{ bins}, 0 1 \text{ GeV}$
- How important are sea quark TMDs ?

Projection of π^+ SSA on proton

Summary

- First measurement of Collins and Sivers moments (A_{IIT}) on ³He target
- First indication of non-zero A_{LT} with neutron target
- Foundation for future experiments at JLab 12 GeV
 - Precision mapping of A_{UT} and A_{LT} using SoLID in Hall-A
 - Comprehensive study of transverse spin and spin-orbit correlations
- A Future EIC can extend these measurements to much lower *x*
 - Important for the study of sea quark TMDs

