Generalized Parton Distributions and Deeply Virtual Compton Scattering

F.-X. Girod

Thomas Jefferson National Accelerator Facility

Outline

Introduction

6 GeV era measurements

12 GeV era projections

Summary

Presentation

François-Xavier Girod

- 12/2006 PhD (Saclay) Deeply Virtual Compton Scattering Beam Spin Asymetries at CLAS for a study of Generalized Parton Distributions
- Feb. 2007 Oct. 2011 : Post-doc in Hall-B at JLab
- Continued program support on DVCS, DVMP, and SIDIS studies
- Completed :
 - second part of eldvcs (unpolarized H)
 - eg1dvcs (longitudinally polarized H and D)
 - eg6 (DVCS on He)
- 2011 Staff scientist in Hall-B
- Responsible for the CLAS12 beamline
- also member of the Heavy Photon Search

Introduction

Diffraction and Imaging

Huygens-Kirchhoff-Fresnel principle

$$\vec{q} = \vec{k} - \vec{k'}$$

The interference pattern is given by the superposition of spherical wavelets

$$f(\Omega_{\vec{q}}) = \int \frac{\mathsf{d}^3 \vec{r}}{(2\pi)^3} F(\vec{r}) \mathrm{e}^{i \vec{q} \cdot \vec{r}}$$

Fourier imaging

Elastic scattering

Form Factors

Probing deeper using virtual photons

"The best fit in this figure indicates an rms radius close to $0.74\pm0.24\times10^{-13}$ cm."

Imaging in transverse impact parameter space

4/27

Deep Exclusive Scattering

Generalized Parton Distributions

spin	N no flip	N flip
q no flip	Н	E
q flip	Ĥ	Ĩ

3-D Imaging conjointly in transverse impact parameter and longitudinal momentum

N(p)

GPDs and Transverse Imaging

 (x_B, t) correlations

$$q_X(x,\vec{b}_{\perp}) = \int \frac{\mathrm{d}^2 \vec{\Delta}_{\perp}}{(2\pi)^2} \left[H(x,0,t) - \frac{E(x,0,t)}{2M} \frac{\partial}{\partial b_y} \right] \mathrm{e}^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}}$$

Parton longitudinal momentum fraction distributions

$$\frac{1}{4\pi}\int dy^{-} e^{ixp^{+}y^{-}} \langle p|\bar{\psi}_{q}(0)\gamma^{+}\psi(y)|p\rangle = f_{q}(x)$$

$$H^{q}(x, \xi = 0, t = 0) = f_{q}(x)$$

Form Factors - Fourier transform of transverse spatial distributions

$$\langle p' | \bar{\psi}_q(0) \gamma^+ \psi(0) | p \rangle = \bar{N}(p') \left[F_1^q(t) \gamma^+ + F_2^q(t) i \sigma^{+\nu} \frac{\Delta_{\nu}}{2M} \right] N(p)$$

$$\int_{-1}^{1} dx H^{q}(x, \xi, t) = F_{1}^{q}(t) \qquad \text{First x-moment}$$
$$\int_{-1}^{1} dx E^{q}(x, \xi, t) = F_{2}^{q}(t)$$

GPDs and Energy Momentum Tensor

(x, ξ) correlations

Form Factors accessed via second x-moments :

$$\langle p' | \hat{T}^{q}_{\mu\nu} | p \rangle = \bar{N}(p') \left[\frac{M_{2}^{q}(t)}{M} \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \frac{i(P_{\mu}\sigma_{\nu\rho}+P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_{1}^{q}(t) \frac{\Delta_{\mu}\Delta_{\nu}-g_{\mu\nu}\Delta^{2}}{5M} \right] N(p)$$

Angular momentum distribution

Deeply Virtual Compton Scattering

The cleanest GPD probe at low and medium energies

Observables sensitivities to GPD

A global analysis is needed to fully disentangle GPDs

6 GeV era measurements

Scaling tests of $\Delta \sigma_{\text{DVCS}}$

E00-110

100-channel scintillator array

132-block PbF_2 electromagnetic calorimeter

Scaling tests of $\Delta \sigma_{\text{DVCS}}$

C. Muñoz *et al.*, PRL **97** (2006) 262002 High precision in a narrow kinematical range

CLAS in Hall-B

CLAS proton Beam Spin Asymmetry **E01-113** $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$

CLAS proton cross-section

E01-113

 $F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$

Q² (GeV²) ₽ Q² (GeV²) More than 3k bins 0.5 1 0.3 0.4 0.5 Xp -t (GeV²) Dispersion relation : $x_B = 0.25$ $Q^2 = 2.24$ t = 0.27 $x_B = 0.25$ $Q^2 = 2.24$ t = 0.35 $x_B = 0.25$ $Q^2 = 2.24$ t = 0.45o (nb/GeV⁴ $\mathcal{R}e \mathcal{H} = \left[\int \mathcal{I}m \mathcal{H}\right] + \mathcal{D}$ 10⁻¹ 10⁻¹ 10-1 270 ¢(°) 180 270 ¢(°) 180 270 ¢ (°) 90 180 90 90 Ő $x_B = 0.34$ $Q^2 = 2.94$ t = 0.35 $x_B = 0.34$ $Q^2 = 2.94$ t = 0.45x_B = 0.34 green band shows $Q^2 = 2.94$ ਰ (nb/GeV⁴) ਰੁ t = 0.62 difference with BH \rightarrow sensitivity to d_1 10 180 270 180 270 ¢ (°) 90 180 270 ¢ (°) 90 φ (°) 90 n

CLAS proton Target Spin Asymmetry E05-114

Ten fold improvement in statistics

 $A_{UL} \propto F_1 \mathcal{I} m \frac{\tilde{\mathcal{H}}}{\mathcal{H}}$

 $F_1 \frac{\tilde{\mathcal{H}}}{\mathcal{H}} + \xi G_M \left(\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right)$

 $A_{
m LL} \propto F_1 \, {\cal R} {
m e} \, { ilde {\cal H} \over {\cal H}}$

Model independent extraction

Using only A_{LU} and A_{UL}

Extraction with :

- Preliminary results from eg1dvcs A_{UL}
- Polarized cross-section from e1dvcs $\Delta \sigma$

Drop of $\Delta q(x)$ at low x_B will be seen at 12 GeV

6 GeV era: lessons learned

- The feasibility of high luminosity exclusive measurements in complementary high precision (Hall-A) and large acceptance (CLAS) spectrometers has been demonstrated.
- The first dedicated generation of experiments suggests precocious scaling in Deeply Virtual Compton Scattering
- The experimental results have triggered theoretical developments for the consistent description of higher twist corrections
- Several approaches investigate Generalized Parton Distribution extraction methods from data
- Unified descriptions with Semi-Inclusive DIS in terms of Wigner distributions have recently been implemented into concrete predictions

12 GeV era projections

GPDs in DVCS program at JLab12

The JLab DVCS program will be carried out in two experimental Halls: **A & B (CLAS12)**

Hall-A DVCS at 12 GeV

E12-06-114

Hall-A DVCS at 12 GeV

S at 12 GeV $e^{v^2}, x_p=0.6, \Theta_{\bullet}=30.23^{\circ}, k'=3 \text{ GeV}, \Theta_{colo}=-11^{\circ}$ **E12-06-114**

22/27

E12-06-009

Proton BSA DVCS A_{LU}

80 days @ $\mathcal{L}=10^{35}~\text{cm}^{-2}\text{s}^{-1}$ with 85% polarized beam

$$A_{LU} \propto F_1 \mathcal{H} + \xi G_M \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$$

Projections for CLAS12

E12-06-009

Statistical uncertainties : from 1 % (low Q^2) to 10 % (high Q^2)

Unprecedented statistics over the full ϕ range up to high x = 0.6

Proton DVCS TSA A_{UL}

120 days @ $\mathcal{L} = 2 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ with 80% polarized NH₃

$$A_{UL} \propto F_1 \frac{\tilde{\mathcal{H}}}{\mathcal{H}} + \xi G_M \left(\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) - \cdots$$

Projections for CLAS12

Statistical uncertainties : from 2 % (low Q^2) to 30 % (high Q^2)

Unprecedented statistics over the full ϕ range up to high x = 0.6

Proton DVCS TSA A_{UL}

120 days @ $\mathcal{L} = 2 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ with 80% polarized NH₃

$$A_{UL} \propto F_1 \frac{\tilde{\mathcal{H}}}{\mathcal{H}} + \xi G_M \left(\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) - \cdots$$

Projections for CLAS12

Statistical uncertainties : from 2 % (low Q^2) to 30 % (high Q^2)

Unprecedented statistics over the full ϕ range up to high x = 0.6

Proton DVCS TSA AUL

120 days @ $\mathcal{L}=2\times 10^{35}~\text{cm}^{-2}\text{s}^{-1}$ with 80% polarized NH_3

E12-06-009

$$A_{UL} \propto F_1 \frac{\tilde{\mathcal{H}}}{\mathcal{H}} + \xi G_M \left(\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E} \right) - \cdots$$

Projections for CLAS12

Sample kinematics for target asymmetry

Change of *t*-slope with $x_B \leftrightarrow$ imaging $\Delta q(x_B, b_\perp)$

55/27

55/27

56/27

Projection for the Nucleon transverse profile

Precision tomography in the valence region

Summary

- A unified framework for nucleon tomography has been established
- The first dedicated results on Compton Scattering suggest precocious handbag dominance
- Accurate information on Generalized Parton Distributions in the valence region and at moderate momentum transfer was gathered
- The long range plan to extract GPDs has begun
- Interplay between spin and flavor decompositions requires also other reactions
- JLab 12 GeV will precisely test scaling and carry out the tomography of valence quarks
- Future measurements are planned at CERN/Compass and DESY/Panda
- The EIC will expand the reach and probe the sea and gluons
- Essential for QCD backgrounds at LHC and beyond

