
EIC Geometry Exchange

Andrea Dotti (adotti@slac.stanford.edu) ; SD/EPP/Computing

http://www.geant4.org

mailto:adotti@slac.stanford.edu
http://www.geant4.org/

Introduction

NP/EIC simulations landscape:

EIC framework is not yet existing and technology choices are not
yet made: complete freedom to develop a comprehensive
new system with innovative technologies

Current HEP-NP frameworks/applications do exist and we want
to:

● exchange information about geometry design
● use these frameworks to study initial EIC concepts
● minimize code changes

develop simple interface that can be integrated with these
code

The challenge

The only constraint we know is that Geant4 will be used at EIC for
simulations

Focus is agree on simple and universal exchange format

Fact: if we want all current existing frameworks/applications to
participate we have two options, ROOT or GDML

Since GDML is considered the “universal” format understood by
everybody, we start from there

Vision

MC Input

GDML

Framework
(w/ Geant4)

Hits Output

DIGI

Truth extra

Reco + Tracking +
Analysis

GDML can be created by high-level tools possibly with
compact detector descriptions

Vision

MC Input

GDML

Framework
(w/ Geant4)

Hits Output

DIGI

Truth extra

Reco + Tracking +
Analysis

GDML can be created by high-level tools possibly with
compact detector descriptions

GDML

GDML

A schema-based XML data format to describe the geometry of a
typical HEP/NP detector

Shapes (e.g. CSG, tessellation, …) can be described together with:
material association (down to atom/isotopes), relation between
geometry components (this volume is daughter of that)

Maintained at CERN as a separate project (not part of G4, ROOT),
see: https://gdml.web.cern.ch/GDML/

Geant4 and ROOT support GDML to write and read
Geant4 ⇒ G4GDMLParser for both write and read
ROOT ⇒ TGDMLParse to read and writer.py for TGeo conversion

https://gdml.web.cern.ch/GDML/

GDML Limitations

It was developed to allow for automatic dump of C++-constructed
geometry (e.g. from Geant4 application):

● some optimizations can not preserved: dump of geometry
structure (loop un-rolling)

● for very complex/realistic geometries GDML becomes too
complex to be edited by hand

● Hits/SD (see later)

The role of GDML for EIC

Your preferred framework/application should use the most
appropriate way of defining geometry: extension of GDML, pure
constructive, CAD, database.

You should only care to be able to export/import GDML to exchange
information with other groups

If you use Geant4 you are covered

https://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/ex
amples_doc/html/Examples_gdml.html

https://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_gdml.html
https://geant4.web.cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html/Examples_gdml.html

Writing GDML from Geant4

Given a Geant4 logical volume (e.g. the detector), from anywhere in
your code:

{
G4GDMLParser parser;
parser.Write(gdml_file_name , logicalVolumePointer);

}

Reading GDML into Geant4

The usual detector construction is replaced/integrated with:

[...] MyDetector::Construct() {
G4GDMLParser parser;
parser.Read(gdml_file_name);
return parser.GetWorldVolume();

}

Can be used to read only a component of the detector

Main limitation: hits and SD

Describe geometry in terms of shapes, materials and (hierarchical)
structure is not enough

Main issue is how to associate Sensitivity and exchange this
information between applications/detectors

Start with GDML

Already available: examples/extended/persistency/gdml/G04 :
“Simple example showing how to associate detector sensitivity to a
logical-volume, making use of the auxiliary-information.”

http://www-geant4.kek.jp/lxr/source/examples/extended/persistency/gdml/G04/

Vision

MC Input

GDML

Framework
(w/ Geant4)

Hits Output

DIGI

Truth extra

Reco + Tracking +
Analysis

GDML can be created by high-level tools possibly with
compact detector descriptions

Hits

What a Geant4 hit is?

A G4Hit represents the energy deposit from a step in space and time

A G4Hit is not the response of the detector (e.g. pulse shape, digital
output, response of a PMT)

However often some low-level detector effects (Birks’ saturation, some zero
suppression) are included in hits for convenience

A Sensitive Detector is a Geant4 class to transform G4Step in a G4Hit
With some detectors (e.g. calorimeters) it is impractical to transform each single
G4Step to a hit (too many), thus accumulation is preferred (e.g. one hit per
calorimeter cell, that accumulates all energy deposits)

Why GDML does not contain SD

Sensitive Detectors are experiment specific, they are algorithms
and not data structure

What can be persistified in GDML is the association between a
logical volume and the (named) corresponding SD. The actual SD
code has to be provided via library

Proposal

Provide a lightweight library that depends only on Geant4:

1. that is distributed and maintained by the EIC Software
Consortium

2. that can be used by any Geant4 existing framework (without
requiring too many changes in user code)

3. that defines a minimalistic common data structure of hits
4. that provides storage of hits in ROOT files

What should be in a hit

ID Int

Volume ID(s) []*sizeof(int) OR []*string

PreStepPoint {x,y,z,t} (both global/local) 8*sizeof(double)

PostStepPoint {x,y,z,t} (both global/local) 8*sizeof(double)

ΔE 1*sizeof(double)

PDG code sizeof(long) //needed for ions

G4Track ID 1*sizeof(int)

SLAC slic developers will help on this!

What should be in a hit

ID Int

Volume ID(s) []*sizeof(int) OR []*string

PreStepPoint {x,y,z,t} (both global/local) 8*sizeof(double)

PostStepPoint {x,y,z,t} (both global/local) 8*sizeof(double)

ΔE 1*sizeof(double)

PDG code sizeof(long) //needed for ions

G4Track ID 1*sizeof(int)

Alternatively replace with median position and step length (some thoughts needed)

What should be in a hit

ID Int

Volume ID(s) []*sizeof(int) OR []*string

PreStepPoint {x,y,z,t} (both global/local) 8*sizeof(double)

PostStepPoint {x,y,z,t} (both global/local) 8*sizeof(double)

ΔE 1*sizeof(double)

PDG code sizeof(long) //needed for ions

G4Track ID 1*sizeof(int)

Identifies the track originating the hit: connection with truth

class G4EicTrackHit : public G4VHit {
//All usual G4 stuff
virtual G4bool WriteHitToRootFile(){

//Here there is the dependency on ROOT.
//Write out a object that can be read on ROOT
//and does not depend on G4

}
virtual G4bool WriteHitToAnotherFormat() {..}

}

Some pseudo-code

What this will look like

GDML (see: examples/extended/persistency/gdml/G04):
<structure>
 <volume name="Boxvol" >
 <materialref ref="Air" />
 <solidref ref="Box" />
 <auxiliary auxtype="SD:EICG4SD:Tracker" auxvalue="MyTracker"/>
 </volume>

Translates to: compile and link your application against
libEICG4SD.so that contains the Tracker Sensitive Detector object,
create an instance named MyTracker

Note: if you do not link against library, the auxiliary tag will be ignored

Simple solution based on naming convention that does not require
changes in GDML nor Geant4

http://www-geant4.kek.jp/lxr/source/examples/extended/persistency/gdml/G04/

How to modify existing user code

Starting from Geant4 version 10.3 it is possible to have multiple
Sensitive Detectors associated to any given Logical Volume

EICG4SD functionality can be added to existing software in parasitic
mode, existing frameworks and applications will continue to produce
the existing hits files

Possible API (only an idea):
[...] MyDetector::Construct() {
 /… Usual stuff

EICG4SDUtility.HandleSD(gdml_file_name , DetLVPtr);
return fWorld;

}

Vision

MC Input

GDML

Framework
(w/ Geant4)

Hits Output

DIGI

Truth extra

Reco + Tracking +
Analysis

GDML can be created by high-level tools possibly with
compact detector descriptions

Reading hits

With ROOT files, it should be trivial* to read back hits once their
data-layout has been decided

A separate library can be created for this with no dependence on
Geant4

*: Not a ROOT guy, no direct experience

Vision

MC Input

GDML

Framework
(w/ Geant4)

Hits Output

DIGI

Truth extra

Reco + Tracking +
Analysis

GDML can be created by high-level tools possibly with
compact detector descriptions

MCTruth

Connection with MCTruth

What we need: mapping between the Geant4 (primary) track and the
generator (e.g. PYTHIA) track id

Provided with a separate library: starting from EICROOT and Fun4All
equivalent functionalities

Conclusions
Deliverable:
C++ library (in ESC gitlab) to produce hits file in ROOT format to be
used by any Geant4-based system

Time-scale:
End of 2018

Manpower:
SLAC personnel on a best effort basis ; +Chris and Alexander for
MCTruth integration)

This is clearly a oversimplified and not-optimized approach, but the
objective is to have an simple, easy-to-maintain proof-of-principle

Project satisfies:
Primary goals:
1. no dependency, must be integrated in existing

frameworks/applications, with minimal disruptions
2. exchange of information between existing

frameworks/applications
3. allow to reason about more realistic system for future EIC

framework
4. provide simulation independent hits for Tracking algorithm

studies

Not a goal:
1. develop a new complete, extendable, performant component of a

framework

