DVCS collaboration meeting

^{16 January 2017} Calorimeter π⁰ calibration update

Frédéric Georges

Reminder

- Monitors fast darkening of the calorimeter
- Can be done very often (~once a day) to update correction coefficients
- Uses π⁰ produced during production run (no dedicated run needed)

• Compute energy correction coefficients to optimize mean value and resolution of π^0 invariant mass reconstruction by computing extremum of:

$$F = \sum_{i=1}^{N} (m_i^2 - m_0^2)^2 + 2\lambda \sum_{i=1}^{N} (m_i^2 - m_0^2)$$

m_i : reconstructed invariant mass

 m_0 : π^0 mass

λ Lagrange multiplier

 $\sum_{i=1}^{N} (m_i^2 - m_0^2)^2$ Measures the width of the reconstructed mass peak

 $2\lambda \sum_{i=1}^{N} (m_i^2 - m_0^2)$ Embodies the constraint $\langle m_i^2 \rangle = m_0^2$

• The gains of each blocks are corrected by correction coefficients ε_k :

$$E_{ji}^{(k)} \rightarrow E_{ji}^{\prime (k)} = (1 + \varepsilon_k) E_{ji}^{(k)}$$

- k: block number
- j: shower number
- i: event number
- E_{ii}^(k): energy of block k, involved in shower j, event I

• Compute
$$\varepsilon_k$$
 by computing $\frac{\partial F'}{\partial \varepsilon_k} = 0$

Solution: $\varepsilon_k = [C^{-1}]_{kk'} (D - \lambda L)_{k'}$

$$C_{kk'} = \sum_{i=1}^{N} \left(\frac{\partial m_i'^2}{\partial \varepsilon_k} \frac{\partial m_i'^2}{\partial \varepsilon_{k'}} \right)$$

$$D_k = -\sum_{i=1}^N \left((m_i^2 - m_0^2) \frac{\partial {m'_i}^2}{\partial \varepsilon_k} \right)$$

$$L_k = \sum_{i=1}^N \frac{\partial {m'_i}^2}{\partial \varepsilon_k}$$

$$\mathsf{B} = \sum_{i=1}^{N} (m_i^2 - m_0^2)$$

$$\lambda = \frac{B + L^{\mathrm{T}} C^{-1} D}{L^{\mathrm{T}} C^{-1} L}$$

$$\frac{\partial m_i'^2}{\partial \varepsilon_k} \simeq m_i^2 \frac{E_{ji}^{(k)}}{s_j}$$

 s_{ii} = shower energy

- Iterative process
- Computation stops when $\epsilon_k \rightarrow 0$
- In reality, you choose the number n of iterations:
 - Minimum: 4 computation iterations
 - Recommended: 8 computation iterations

• Finally: Correction coefficients are $(1+\epsilon_k(\text{iteration1})) * (1+\epsilon_k(\text{iteration2})) * ... * (1+\epsilon_k(\text{iteration n}))$

Minimum statistics needed

- Estimation using π^0 simulation with ~kin48_2 parameters:
 - ~1/4 day of data with 15 μ A beam (2 million CODA events ~ 4k π^0 events):
 - ±4% error for "central" blocks
 - ±10-15% error for blocks "close" to the edges
 - ~1/2 day of data with 15 μ A beam (4 million CODA events ~ 8k π^0 events):
 - ±2-3% error for "central" blocks
 - ±6-8% error for blocks "close" to the edges
 - ~1 day of data with 15 μ A beam (8 million CODA events ~ 16k π^0 events):
 - ±1-2% error for "central" blocks
 - ±4-5% error for blocks "close" to the edges
- Experience from Fall 2016:
 - Simulation may be too optimistic (π⁰ distribution across calorimeter surface, background, very dark blocks, etc...)

Time consumption issue

- Several concatenated "for" loops + 8 iterations + huge statistics needed = Very long to run
 - Longer than allowed time on computation farm.
- Acceleration by pre-selecting π^0 events candidates (millions \rightarrow a few 10k events).
 - ~1h to run pre-selection + 20min for calibration process

• However: pre-selection + statistics need = issue with blocks joining the dark side.

The Dark block problem

Dark block = few events (energy deposit cut)

ightarrow not enough statistics for the calibration

- At computation iteration 2: new (temporary) correction coefficient $(1+\epsilon_k)$ should increase the gain.

 \rightarrow more statistics

BUT: because of pre-selection, number of π^0 events already limited

- \rightarrow not enough statistics \rightarrow calibration fails
- Need to do {pre-selection+calibration} a 2nd time, starting with coefficients from 1st time.
- May need a 3rd time if block very dark.
- Still faster than if no pre-selection at all.

- Do not confuse:
 - {pre-selection+calibration} iteration
 - computation iteration
- calibration process computes correction coefficients using several computation iterations (minimum: 4, recommended: 8)
- We need several (2 or maybe 3) {pre-selection+calibration} iterations to get "correct" values for the correction coefficients.

Limitations with the calorimeter edges

- π⁰ calibration does not work for the edges of the calorimeter (may lead to infinite or negative coefficients)
- Artificially lock correction coefficients of blocks at the edges at a fixed value:

• 1

- Mean value of all the other coefficients
 - From previous set of runs used
 - From previous {pre-selection+calibration} iteration
- Blocks near blocks on the edges: less reliable results.

Block 49 is so dark that the calibration has trouble working

Blocks with biggest issues: 24, 35, 49, 76, 110, 129, 151

Ē	16	- 15	31	47	63	79	95	111	127	143	159	175	191	207	1.7
		- 14	30	46	62	78	94	00,000	126	142	158	174	190	206	
	14	- 13	29	45	61	77	93	109	125	141	157	173	189	205	1.6
0 L		- 12	28	44	60	15 (2.92)	92	108	124	140	156	172	188	204	
	12	- 11	27	43	59	75	91	107	123	139	155	171	187	203	-1.5
		- 10	26	42	58	74	90	106	122	138	154	170	186	202	
	10	-9	25	41	57	73	89	105	121	137	153	169	185	201	1.4
		-8	24 (1.68)	40	56	72	88	104	120	136	152	168	184	200	
	8	-7	23	39	55	71	87	103	119	135	151 (1.9A)	167	183	199	1.3
		-6	22	38	54	70	86	102	118	134	150	166	182	198	
	6	- 5	21	37	53	69	85	101	117	133	149	165	181	197	-1.2
		-4	20	36	52	68	84	100	116	132	148	164	180	196	1.1
	4	- 3	19	35 (2.36)	51	67	83	99	115	131	147	163	179	195	
		- 2	18	34	50	66	82	98	114	130	146	162	178 11.95	194	1
	2	- 1	17	33	19 (1.51)	65	81	97	113	129 (1.70)	145	161	177	193	
	^	- 0 _.	16	32	48	64	80	96	112	128	144	160	176	192	0.0
0) 2		2	4			6	8		10		12		0.9
													Col. number		

Kin60_3, set 14

• π^0 calibration does work well despite limitations.

Calibrations done a few days before elastic calibration (blocks loss of gain at its worse).

Status and outlook

- π^0 calibration working
- To do:
 - Fix Dark block issue (test 3rd {pre-selection+calibration} + use more statistics).
 - Test: use more statistics to improve precision / remove fluctuations.
 - Test: decrease energy deposit cuts even more to increase π^0 statistics
 - Make lists of sets of runs to use for the calibrations.
 - Macro for mass calibration of production runs almost ready: need to implement latest modifications from Fall 2016 (edges coefficients values, 2nd and maybe 3rd iteration of {pre-selection+calibration}).
 - (later) Copy output correction coefficients files to SQL database.