BPM Calibration for GMp/DVCS experiments`

Thir Gautam Hampton University

On behalf of the DVCS Collaboration

DVCS Collaboration Meeting January 17, 2017

Outline

- Motivation
- Hall A beamline and coordinate systems
- Beam position monitoring instruments
- BPM calibrations and results
- Conclusions

Motivation

- Shift in vertical beam position cause change in spectrometer momentum
- The scattering angle at vertex depends on beam direction, which in turns depends on the beam position measurements

Hall beamline transport

Hall A Beam Position Monitors

- Two BPMs provides non destructive measurements when beam is present in the hall
- Each BPM consists of a cylindrical cavity housing of four wires (X_{p}, X_{m}, Y_{p} and Y_{m})
- The relative beam positions X^{\prime} and Y^{\prime} along the axis of the wires is given by:

$$
X^{\prime}=k \frac{\left(X_{p}-X_{m}\right)}{\left(X_{p}+X_{m}\right)}, Y^{\prime}=k \frac{\left(Y_{p}-Y_{m}\right)}{\left(Y_{p}+Y_{m}\right)}
$$

Where, $\mathrm{k}=0.01887$

Positions in Hall A coordinate system

Harp scanners

- Harps provides an invasive measurement of the beam position
- Consists of three wires: the first into the beam is vertical and the next two are at 45° to the vertical
- They operates by moving differently oriented wires across a low current beam and reading out the induced wire signals
- They are routinely surveyed with respect to hall coordinate system

EPICS and hall coordinate system

- Accelerator coordinate system are left handed system where all EPICS information are given
- Hall coordinates are right handed where all the survey information are given

BPM calibration

- Idea is to convert the relative beam position from BPM to the absolute positions in hall coordinate system using positions determined by the harp scan.
- Need to find the calibration constants that give positions at BPM close to positions from harps.
- Estimated uncertainty on beam position is $\sim 0.03 \mathrm{~mm}$

BPM Relative coordinates(x^{\prime}, y^{\prime})

Hall coordinates (x, y)

$$
\left.\binom{x}{y_{\text {Abso }}}^{c_{11}} \begin{array}{ll}
c_{12} \\
c_{21} & c_{22}
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}+\binom{x_{o f}}{y_{o f}}
$$

- It is an over tuned system (have 5 harp positions). So we use least square method to calculate the constants

Calibrations for different run periods

Fall 2014 calibration: \rightarrow Preliminary results of BPMB: https://logbooks.jlab.org/entry/3311886
\rightarrow The harp next to BPMA was not operational and bull's eye scans were overlapping with one another
\rightarrow No final BPM calibration

Left BPMA y vs x

Left BPMB y vs x

Calibrations for different run periods

Spring 2015 calibration:

LHRS
BPMA: - 0.7716110 .8349720 .8022780 .7872250 .0008598020 .000368513
BPMB: -0.744433 0.7652360 .8257680 .774278 -0.000325983 0.00162295
RHRS:
BPMA: -0.661529 0.7153920 .6807290 .6717650 .0002210950 .0017538
BPMB: -0.789031 $0.8089090 .8725210 .812793-0.00026796-0.000476752$

Spring 2016 calibration:

LHRS

BPM A:	-0.728829	0.760656	0.798555	0.746075	0.00138441	-0.000184231
BPM B:	-0.751747	0.774562	0.823933	0.761607	0.000742791	-0.00128245
RHRS						
BPM A:	-0.73589	0.764353	0.805468	0.749956	0.00102968	0.00167268
BPM B:	-0.75004	0.773907	0.826183	0.762423	0.000323344	-0.000890677

Calibrations for different run periods

Fall 2016 calibration (Oct):

LHRS

BPMA	-0.750796	0.723848	0.77656	0.72107	0.00143766	$-6.81262 \mathrm{e}-06$
BPMB	-0.624004	0.761298	0.659681	0.708074	0.000601645	-0.000985787
RHRS:						
BPMA: -0.759028	0.737819	0.787136	0.736787	0.00108179	0.0017238	
BPMB:	-0.636638	0.768906	0.673286	0.716724	0.000252628	-0.000682291

LHRS Fall 2016 calibration (Dec):

\rightarrow Apparent position shift in the data-stream was found which followed the RF card replacement for BPM H04A
\rightarrow Addressed by new bull's eye scan
\rightarrow Analysis is still in progress due to harp encoder mismatch

Conclusion

- BPMs are calibrated at different run periods
- Beamline databases are updated with new calibrations for each run period
- Analysis of bull's eye scans for Dec 2016 run is in progress

Harp encoder

- The harp scan results in a text file consists of encoder positions and corresponding adc signals
- The encoder value needs to be translated to real world position
- The beam position is determined by the encoder positions where the peaks of the adc signals are
- Wires are moved across the beam path
- When beam hits the wire, a signal is detected by the PMT's positioned next to the scanner
- From the combination of size of the signal and the position of scanner beam position is determined

