

Hall A DVCS Collaboration Meeting 16—17 January 2017

Exclusive DVCS & Associated Production

- Exclusive: H(e,e' γ)p
 - $M_{\chi^2} = M_p^2$
- Associated Production H(e,e' γ)Nπ
 - $M_{\chi^2} \ge (M_p + m_{\pi})^2$
- Modelling the associated production:
 - Vary the exclusivity cut over a broader range, with greater precision
 - Extract some inelastic physics

Associated Production: $H(e,e'\gamma)N\pi$

- Incoherent sum
 - Sum over π^+ and π^0 final states
 - Integration over pion decay angular distribution
 - $d\sigma \sim |M(ep \rightarrow e\gamma p\pi^0)|^2 + |M(ep \rightarrow e\gamma n\pi^+)|^2$
- Coherent sum ABH + ADVCS

ADVCS+ABH Theory

P.Guichon, L.Mossé, M.Vanderhaeghen, Phys Rev D 68 (2003) 034018

- (N π) s-wave near threshold
 - Soft Pion Theorems (Chiral Perturbation Theory)
 - Form factors and GPDs determined from (u,d) flavor separated Nucleon form factors and GPDs
- (N π) *p*-wave: ' Δ ' Resonance
 - P₃₃(1232MeV) (Isospin=3/2, Spin=3/2)
 - Use large N_{color} limit
 - $N \rightarrow \Delta$ transition GPDs derived from Nucleon GPDs
- M.Polyakov & S.Stratmann <u>hep-ph/0609045</u>
 - Deep Virtual H(e,e' π_{Hard})N π_{Soft}

Associated BH
$$t_{\gamma} = (q-q')^2 = \Delta^2$$

$$T^{\rm BH} = e^3 J_{\nu}(M_X^2) \frac{1}{-\Delta^2} \overline{u}(k',h') \left[\gamma \cdot \epsilon'(\lambda,q)^{\dagger} \frac{\gamma \cdot (k'+q') + m_e}{2k' \cdot q'} \gamma^{\nu} + \gamma^{\nu} \frac{\gamma \cdot (k-q') + m_e}{-2k \cdot q'} \gamma \cdot \epsilon'(\lambda,q)^{\dagger} \right] u(k,h)$$
$$J_{\nu}(M_X^2) = \left\langle N(p',\sigma')\pi \left| \hat{J}_{\nu}(q-q') \right| p(p,\sigma) \right\rangle$$

- $N\pi$ Threshold (χ PT) $\left\langle N(p',\sigma')\pi^a \left| \hat{J}_{\nu}(q-q') \right| p(p,\sigma) \right\rangle = T^a_{\nu,\mathrm{Born}}(p'|p) + \frac{1}{f_{\pi}} \epsilon_{a3b} \left\langle N(p',\sigma') \left| \hat{J}^b_{5\nu}(q-q') \right| p(p,\sigma) \right\rangle$
 - $T_{Born} \sim F_{1,2}^{p,n}(-t_{\gamma})$
 - $J_5 \sim F_A(-t_\gamma)$
- Δ -Resonance: \Rightarrow Dominated by $G_M^{\Delta}(-t) \approx 3 \ G_D(-t)$ $\langle (N\pi)_{\Delta} | J^{\nu} | p \rangle = -\mathcal{I} \frac{f_{\pi N \Delta}}{m_{\pi}} (k_{\pi})^{\alpha} \overline{U}(p', \sigma') \frac{i (\gamma \cdot P_X + M_X)}{M_X^2 - M_{\Delta}^2 + i M_X \Gamma_{\Delta}(M_X)}$ $\left\{ g_{\alpha\beta} - \frac{\gamma_{\alpha} \gamma_{\beta}}{3} - \frac{[\gamma_{\alpha}(P_X)_{\beta} - \gamma_{\beta}(P_X)_{\alpha}]}{3M_X} - \frac{2(P_X)_{\alpha}(P_X)_{\beta}}{3M_X^2} \right\}$ $\left\{ \overline{G_M^{\Delta}(-\Delta^2)}(-\mathcal{K}^M)^{\beta\nu} + \overline{G_E^{\Delta}(-\Delta^2)}(-\mathcal{K}^E)^{\beta\nu} + \overline{G_C^{\Delta}(-\Delta^2)}(-\mathcal{K})^{\beta\nu} \right\} U(p, \sigma)$

Associated DVCS

- ($N\pi$) Threshold:
 - Nucleon GPDs: $H_{p,n}(x,\xi,t)$, $E_{p,n}$, $\tilde{H}_{p,n}$, $\tilde{E}_{p,n}$
 - Isovector GPDs: $H_u(x,\xi,t) H_d(x,\xi,t), \dots$
 - Compton Form Factors
- P₃₃ Resonance: Dominant terms are
 - $H_M^{\Delta}(x,\xi,t) \rightarrow \frac{2}{\sqrt{3}} [E_u(x,\xi,t) E_d(x,\xi,t)]$
 - $C_1^{\Delta}(x,\xi,t) \to \sqrt{3} \left[\widetilde{H}_u(x,\xi,t) \widetilde{H}_d(x,\xi,t) \right]$

Model results for Photo-Production

- Guichon, Mossé, Vanderhaegen apply their hadronic current model to photo-production
 - ≈ "calibrates" BH Cross section
 - π⁺ dominates threshold region.

PHYSICAL REVIEW D 68, 034018 (2003)

FIG. 9. Total pion photoproduction cross sections for the different model contributions considered in this paper. Dashed curves: commutator contribution. Dash-dotted curves: commutator+Born contributions. Dotted curves: Δ contribution. Solid curves: commutator+Born+ Δ contributions. The data are from Ref. [36] (diamonds), Ref. [37] (circles), and Ref. [38] (triangles).

Program

- Detailed notes from PRD68 paper:
 - <u>https://hallaweb.jlab.org/dvcslog/12+GeV/414</u>
- Simulation code in development
 - Event Generator with resolution and radiation tail completed by Hashir R.
 - Skeleton of code (C.H.) implementing Dirac algebra with <u>qft++</u> classes of M. Williams.
- Keep only dominant terms, apply global normalizations ABH, ADVCS amplitudes to fit near threshold inclusive data.

Apply to 2010 data and 12 GeV data