

Hall A DVCS
Collaboration Meeting 16-17 January 2017

Exclusive DVCS \& Associated Production

- Exclusive: H(e,e' r)p
- $M_{X}{ }^{2}=M_{p}{ }^{2}$
- Associated Production H(e, e' γ) $N \pi$
- $M_{X}{ }^{2} \geq\left(M_{p}+m_{\pi}\right)^{2}$
- Modelling the associated production:
- Vary the exclusivity cut over a broader range, with greater precision
- Extract some inelastic physics

Associated Production: H(e,e' γ) $\mathrm{N} \pi$

- Incoherent sum
- Sum over π^{+}and π^{0} final states
- Integration over pion decay angular distribution
- $d \sigma \sim \mid M\left(\left.e p \rightarrow e \gamma p \pi^{0}\right|^{2}+\mid M\left(\left.e p \rightarrow e \gamma n \pi^{+}\right|^{2}\right.\right.$
- Coherent sum ABH + ADVCS

ADVCS+ABH Theory

P.Guichon, L.Mossé, M.Vanderhaeghen, Phys Rev D 68 (2003) 034018

- ($N \pi$) s-wave near threshold
- Soft Pion Theorems (Chiral Perturbation Theory)
- Form factors and GPDs determined from (u,d) flavor separated Nucleon form factors and GPDs
- ($\mathrm{N} \pi$) p-wave: ' $\mathrm{\Delta}^{\prime}$ Resonance
- $P_{33}(1232 \mathrm{MeV})$ (Isospin=3/2, Spin=3/2)
- Use large $N_{\text {color }}$ limit
- $N \rightarrow \Delta$ transition GPDs derived from Nucleon GPDs
- M.Polyakov \& S.Stratmann hep-ph/0609045
- Deep Virtual H(e,e' $\left.\pi_{\text {Hard }}\right) N \pi_{\text {Soft }}$

Associated BH
 $$
t_{\gamma}=\left(\mathrm{q}-\mathrm{q}^{\prime}\right)^{2}=\Delta^{2}
$$

$$
\begin{array}{ll}
T^{\mathrm{BH}}=e^{3} J_{\nu}\left(M_{X}^{2}\right) \frac{1}{-\Delta^{2}} \bar{u}\left(k^{\prime}, h^{\prime}\right)\left[\gamma \cdot \epsilon^{\prime}(\lambda, q)^{\dagger} \frac{\gamma \cdot\left(k^{\prime}+q^{\prime}\right)+m_{e}}{2 k^{\prime} \cdot q^{\prime}} \gamma^{\nu}\right. \\
& \left.+\gamma^{\nu} \frac{\gamma \cdot\left(k-q^{\prime}\right)+m_{e}}{-2 k \cdot q^{\prime}} \gamma \cdot \epsilon^{\prime}(\lambda, q)^{\dagger}\right] u(k, h)
\end{array}
$$

- $N \pi$ Threshold ($\chi \mathrm{PT}$)
$\left\langle N\left(p^{\prime}, \sigma^{\prime}\right) \pi^{a}\right| \hat{J}_{\nu}\left(q-q^{\prime}\right)|p(p, \sigma)\rangle=T_{\nu, \operatorname{Born}}^{a}\left(p^{\prime} \mid p\right)+\frac{1}{f_{\pi}} \epsilon_{a 3 b}\left\langle N\left(p^{\prime}, \sigma^{\prime}\right)\right| \hat{J}_{5 \nu}^{b}\left(q-q^{\prime}\right)|p(p, \sigma)\rangle$
- $T_{\text {Born }} \sim F_{1,2}^{p, n}\left(-t_{\gamma}\right)$
- $J_{5} \sim F_{A}\left(-t_{\gamma}\right)$
- Δ-Resonance: \rightarrow Dominated by $G_{M}{ }^{\Delta}(-t) \approx 3 G_{D}(-t)$

$$
\begin{aligned}
&\left\langle(N \pi)_{\Delta}\right| J^{\nu}|p\rangle=-\mathcal{I} \frac{f_{\pi N \Delta}}{m_{\pi}}\left(k_{\pi}\right)^{\alpha} \bar{U}\left(p^{\prime}, \sigma^{\prime}\right) \frac{i\left(\gamma \cdot P_{X}+M_{X}\right)}{M_{X}^{2}-M_{\Delta}^{2}+i M_{X} \Gamma_{\Delta}\left(M_{X}\right)} \\
&\left\{g_{\alpha \beta}-\frac{\gamma_{\alpha} \gamma_{\beta}}{3}-\frac{\left[\gamma_{\alpha}\left(P_{X}\right)_{\beta}-\gamma_{\beta}\left(P_{X}\right)_{\alpha}\right]}{3 M_{X}}-\frac{2\left(P_{X}\right)_{\alpha}\left(P_{X}\right)_{\beta}}{3 M_{X}^{2}}\right\} \\
&\left\{G_{M}^{\Delta}\left(-\Delta^{2}\right)\left(-\mathcal{K}^{M}\right)^{\beta \nu}+G_{E}^{\Delta}\left(-\Delta^{2}\right)\left(-\mathcal{K}^{E}\right)^{\beta \nu}+G_{C}^{\Delta}\left(-\Delta^{2}\right)(-\mathcal{K})^{\beta \nu}\right\} U(p, \sigma)
\end{aligned}
$$

Associated DVCS

- $(N \pi)$ Threshold:
- Nucleon GPDs: $H_{p, n}(x, \xi, t), E_{p, n}, \widetilde{H}_{p, n}, \tilde{E}_{p, n}$
- Isovector GPDs: $H_{u}(x, \xi, t)-H_{d}(x, \xi, t), \ldots$
- Compton Form Factors
- P_{33} Resonance: Dominant terms are
- $H_{M}^{\Delta}(x, \xi, t) \rightarrow \frac{2}{\sqrt{3}}\left[E_{u}(x, \xi, t)-E_{d}(x, \xi, t)\right]$
- $C_{1}^{\Delta}(x, \xi, t) \rightarrow \sqrt{3}\left[\widetilde{H}_{u}(x, \xi, t)-\widetilde{H}_{d}(x, \xi, t)\right]$

Model results for Photo-Production

- Guichon, Mossé, Vanderhaegen apply their hadronic current model to photo-production
- \approx "calibrates" BH Cross section
- π^{+}dominates threshold region.

FIG. 9. Total pion photoproduction cross sections for the different model contributions considered in this paper. Dashed curves: commutator contribution. Dash-dotted curves: commutator+Born contributions. Dotted curves: Δ contribution. Solid curves: commutator+Born $+\Delta$ contributions. The data are from Ref. [36] (diamonds), Ref. [37] (circles), and Ref. [38] (triangles).

Program

- Detailed notes from PRD68 paper:
- https://hallaweb.jlab.org/dvcslog/12+GeV/414
- Simulation code in development
- Event Generator with resolution and radiation tail completed by Hashir R.
- Skeleton of code (C.H.) implementing Dirac algebra with qft++ classes of M. Williams.
- Keep only dominant terms, apply global normalizations ABH, ADVCS amplitudes to fit near threshold inclusive data.

Apply to 2010 data and 12 GeV data

