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DCSB Refresher

π Jπ= 0−

σ Jπ= 0+

ρ Jπ= 1−

a1 Jπ= 1+

N Jπ= 1
2

+

N ∗ Jπ= 1
2

−

LQCD invariant under: SU(Nf )L ⊗ SU(Nf )R ⇐⇒ SU(Nf )V ⊗ SU(Nf )A

For Nf = 2, SU(Nf )V transformations correspond to the isospin

hadron mass spectrum tells us nature largely respects isospin symmetry
mπ− ' mπ0 ' mπ+ , mp ' mn, mΣ− ' mΣ0 ' mΣ+

therefore SU(Nf )V is realized in the Wigner-Weyl mode

SU(Nf )A transformations mix states of opposite parity
expect hadron mass spectrum to exhibit
parity degeneracy
ma1 −mρ; mN −mN∗ ∼ 500 MeV

mu ' md ' 5 MeV, cannot produce such
large mass splittings
therefore SU(Nf )A must be realized
in the Nambu-Goldstone mode

Chiral symmetry is broken dynamically;
=⇒ massless Goldstone bosons = pions
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For Nf = 2, SU(Nf )V transformations correspond to the isospin

hadron mass spectrum tells us nature largely respects isospin symmetry
mπ− ' mπ0 ' mπ+ , mp ' mn, mΣ− ' mΣ0 ' mΣ+

therefore SU(Nf )V is realized in the Wigner-Weyl mode

SU(Nf )A transformations mix states of opposite parityThe hadronic matrix element of the energy-momentum tensor θµν , at
zero momentum transfer, is given by

〈P |θµν |P 〉 = 2PµP ν

In chiral limit therefore have
〈
π
∣∣θµµ
∣∣π
〉

= 2m2
π → 0,

〈
p
∣∣θµµ
∣∣ p
〉

= 2m2
p

To properly address the original of the proton mass need a framework
that encapsulates DCSB.
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QCD’s Dyson-Schwinger Equations
The equations of motion of QCD⇐⇒ QCD’s Dyson–Schwinger equations

an infinite tower of coupled integral equations
tractability =⇒ must implement a symmetry preserving truncation

The most important DSE is QCD’s gap equation =⇒ quark propagator

−1
=

−1
+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p) =
Z(p2)

i/p+M(p2)

S(p) has correct perturbative limit

mass function, M(p2), exhibits
dynamical mass generation

complex conjugate poles
no real mass shell =⇒ confinement

[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]
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QCDs Dyson-Schwinger Equations

ETC!
Image courtesy of Gernot Eichmann
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DSEs – A closer look

−1
=

−1
+

Not possible to solve tower of equations – start with gap equation
need ansatz for dressed gluon propagator × dressed quark-gluon vertex
truncation must preserve symmetries, e.g., electromagnetic current, chiral

Dµν(p) =

(
δµν − qµqν

q2

)
∆(q2) + ξ

qµqν

q4

Γa,µgqq(p
′, p) =

λa

2

∑12

i=1
Λµi fi(p

′2, p2, q2)

=
λa

2
[ΓµL(p′, p) + ΓµT (p′, p)]

usually choose Landau gauge ξ = 0
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Therefore both gluons and quarks posses dynamically generated masses

QCD dynamically generates its own infrared cutoffs

A. C. Aguilar et al,
Phys. Rev. D81, 034003 (2010).
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Beyond Rainbow Ladder Truncation
Include “anomalous chromomagnetic” term in quark-gluon vertex

1
4π g

2Dµν(`) Γν(p′, p) → αeff(`)D
free
µν (`) [γν + iσµνqν τ5(p′, p) + . . .]

In chiral limit anomalous chromomagnetic term can only appear through
DCSB – since it is not chirally symmetric

Expect strong gluon dressing to produce
non-trivial structure for a dressed quark

recall dressing produces – from massless
quark – a M ∼ 400 MeV dressed quark
dressed quarks likely contain large
amounts of orbital angular momentum

Large anomalous chromomagnetic
moment in the quark-gluon vertex –
produces a large quark anomalous
electromagnetic moment

dressed quarks are not point particles!

[L. Chang, Y. -X. Liu, C. D. Roberts, PRL 106, 072001 (2011)]
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Pion Structure
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The Pion in QCD
Today the pion is understood as both a bound state of a
dressed-quark and a dressed-antiquark in QFT and the
Goldstone mode associated with DCSB in QCD

This dichotomous nature has numerous ramifications, e.g.:

mρ/2 ∼MN/3 ∼ 350 MeV however mπ/2 ' 0.2× 350 MeV

pion is unusually light, the key is dynamical chiral symmetry breaking (DCSB)

In QFT a two-body bound state (e.g. a pion or rho) is described by the
Bethe-Salpeter equation (BSE):

Γ = Γ K K = + + . . .

the kernel must yield a solution that encapsulates the consequences of DCSB, e.g.,
in chiral limit mπ = 0 & m2

π ∝ mu +md

BSE wave function =⇒ light-front wave function (LFWF) =⇒ PDA

ψ(x,kT ) =
∫
dk− χBSE(p, k), ϕ(x) =

∫
dkT ψ(x,kT )
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Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

P
D
A

P
D
A

P
D
A

P
D
A

GPDs

P
D
A

GPDs

PDAs enter numerous hard exclusive scattering processes

Q2 Fπ(Q2)→ 16π f2
π αs(Q

2) Q2 Fγ∗γπ(Q2)→ 2 fπ
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Pion’s Parton Distribution Amplitude
The pion’s PDA is defined by

fπ ϕπ(x) = Z2

∫
d4k

(2π)2
δ
(
k+ − x p+

)
Tr
[
γ+γ5 S(k) Γπ(k, p)S(k − p)

]

S(k) Γπ(k, p)S(k − p) is the pion’s
Bethe-Salpeter wave function

in the non-relativistic limit it corresponds to
the Schrodinger wave function

ϕπ(x): is the axial-vector projection of
the pion’s Bethe-Salpeter wave function
onto the light-front

Pion PDA is a scale dependent non-perturbative
quantity, which e.g., governs the Q2 dependence
of pion form factor in the asymptotic regime

Q2 Fπ(Q2)
Q2→∞−→ 16π f2

π αs(Q
2) ⇐⇒ ϕasy

π (x) = 6x (1− x)
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Pion PDA from the DSEs

asymptotic

rainbow-ladder

DCSB improved
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[L. Chang, ICC, CDR, et al., Phys. Rev. Lett. 110, 132001 (2013)] [C.D. Roberts, Prog. Part. Nucl. Phys. 61 50 (2008)]

Both DSE results – each using a different Bethe-Salpeter kernel – exhibit a
pronounced broadening compared with the asymptotic pion PDA

scale of calculation is given by renormalization point ξ = 2 GeV

A realization of DCSB on the light-front

ERBL evolution demonstrates that the pion’s PDA remains broad & concave
for all accessible scales in current and conceivable experiments

Broading of PDA influences the Q2 evolution of the pion’s EM form factor
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Pion PDA from Lattice QCD
asymptotic

typical of standard analysis
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Currently, lattice QCD can determine
only one non-trivial moment, e.g.:

[V. M. Braun et al., Phys. Rev. D 74, 074501 (2006)]

scale is Q2 = 4 GeV2

Standard practice to fit first coefficient
of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
method results in a double-humped pion PDA – not supported by BSE WFs

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α(1− x)α

[
1 +

∑
n=2, 4,...

aα+1/2
n (Q2)Cα+1/2

n (2x− 1)
]

Find ϕπ ' xα(1− x)α, α = 0.35+0.32
−0.24 ; good agreement with DSE: α ∼ 0.52

∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.27± 0.04
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[
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Find ϕπ ' xα(1− x)α, α = 0.35+0.32
−0.24 ; good agreement with DSE: α ∼ 0.52

∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.27± 0.04

[ICC, et al., Phys. Rev. Lett. 111, 092001 (2013)]
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Pion PDA from Lattice QCD – updated
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asymptotic lattice QCD

DCSB improved

Most recent lattice QCD moment:
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.2361 (41) (39) (?)

[V. M. Braun, et al., Phys. Rev. D 92, no. 1, 014504 (2015)]

DSE prediction:
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.251

Near complete agreement between
DSE prediction and latest lattice
QCD result

Conclude that the pion PDA is
a broad concave function

double humped distributions are
very likely for the pion
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Pion Elastic Form Factor
[L. Chang, ICC, CDR, et al., Phys. Rev. Lett. 111, 141802 (2013)]

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Q2 (GeV2)

Q
2
F
π
(Q

2
)

(G
eV

2
)

using DCSB-broadened PDA

using asymptotic pion PDA

forthcoming Jefferson Lab data

DSE prediction [Q2 Fπ]
Direct, symmetry-preserving
computation of pion form factor
predicts maximum in Q2 Fπ(Q2)

at Q2 ≈ 6 GeV2

magnitude of this product is
determined by strength of DCSB
at all accessible scales

The QCD prediction can be expressed as

Q2Fπ(Q2)
Q2�Λ2

QCD∼ 16π f2
π αs(Q

2) w2
π ; wπ =

1

3

∫ 1

0

dx
1

x
ϕπ(x)

Find consistency between the direct pion form factor calculation and the
QCD hard-scattering formula – if DSE pion PDA is used

15% disagreement may be explained by higher order/higher-twist corrections

Predict that QCD power law behavior – with QCD’s scaling law violations –
sets in at Q2 ∼ 8 GeV2

ECT* 3–7 April 2017 14 / 30



Pion Elastic Form Factor
[L. Chang, ICC, CDR, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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Pion Elastic Form Factor
[L. Chang, ICC, CDR, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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Nucleon Structure
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Baryons in QFT

image from
Gernot Eichmann

A robust description of the nucleon as a bound state of 3 dressed-quarks can
only be obtained within an approach that respects Poincaré covariance

Such a framework is provided by the Poincaré covariant Faddeev equation

sums all possible interactions between three dressed-quarks
much of 3-body interaction can be absorbed into effecive 2-body interactions
Faddeev eq. has solutions at discrete values of p2 (= M2) =⇒ baryon spectrum

A prediction of these approaches is that owing to DCSB in QCD – strong
diquark correlations exist within baryons

any interaction that describes color-singlet mesons also generates non-pointlike
diquark correlations in the color-3̄ channel
where scalar (0+) & axial-vector (1+) diquarks most important for the nucleon
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Diquarks

P
pq

pd

Ψa =
P

pq

pd

Ψb

Γa

Γb

[I. Wetzorke and F. Karsch, hep-lat/0008008]

Diquarks are dynamically
generated correlations
between quarks inside baryons

typically diquark sizes are similar to analogous mesons: r0+ ∼ rπ , r1+ ∼ rρ
These dynamic qq correlations are not the static diquarks of old

all quarks participate in all diquark correlations
in a given baryon the Faddeev equation predicts a probability for each diquark
cluster
for the nucleon: scalar (0+) ∼ 70%

axial-vector (1+) ∼ 30%

Faddeev equation spectrum has
significant overlap with constituent
quark model and limited relation to
Lichtenberg’s quark+diquark model

Mounting evidence from hadron structure
(e.g. PDFs, form factors) and lattice

scalar diquark

axial-vector diquark
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Diquark Spectrum

Jπ= 0+, T = 0

MS ∼ 770 MeV
isoscalar-scalar

Jπ= 1+, T = 1

MAV ∼ 930 MeV
isovector-axialvector

Jπ= 0−, T = 0

MPS ∼ 990 MeV
isoscalar-pseudoscalar

Jπ= 1−, T = 0

MV ∼ 1100 MeV
isoscalar-vector
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DCSB results in a mass spectrum for
the diquarks

For nucleon – in non-relativitic limit –
parity dictates that DS and DAV are in
s-wave, and DP and DV in p-wave
– opposite is true for N∗(1535)

This interplay and DCSB produce
bulk features of the baryon spectrum
below ∼2 GeV

Spectrum is given by values of p2

with eigenvalue one

with parity +1 ground state is
nucleon, parity −1 ground state
is N∗(1535), etc
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Proton GE/GM Ratio
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with acm/aem term

without acm/aem term

Large chromo-magnetic moment is driven by DCSB

Quark anomalous magnetic moment required for good agreement with data
important for low to moderate Q2

power law suppressed at large Q2

Form factor measurements provide information on quark– photon vertex and
by using the DSEs the quark–gluon vertex

knowledge of quark–gluon vertex provides αs(Q2) within DSEs⇔ confinement

[L. Chang, Y. -X. Liu, et al., Phys. Rev. Lett. 106, 072001 (2011)] [I. C. Cloët, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)]

q
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=
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+
q
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ECT* 3–7 April 2017 19 / 30



Neutron GE/GM Ratio
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DSE prediction

Dressed quark anomalous chromo- (=⇒ electro-) magnetic moment has only
a minor impact on neutron Sachs form factor ratio – cancellations

The DSE prediction was confirmed on domain 1.5 . Q2 . 3.5 GeV2

shortcomings in other approaches have been exposed

Predict a zero-crossing in GEn/GMn at Q2 ∼ 11 GeV2

zero-crossing driven by correlations in nucleon wave function

Turn over in GEn/GMn can be tested at the Jefferson Lab

[L. Chang, Y. -X. Liu, et al., Phys. Rev. Lett. 106, 072001 (2011)] [I. C. Cloët, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)]
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Neutron GE/GM Ratio
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zero-crossing driven by correlations in nucleon wave function

Turn over in GEn/GMn can be tested at the Jefferson Lab

[I. C. Cloët, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)][S. Riordan et al., Phys. Rev. Lett. 105, 262302 (2010)]
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DSE prediction
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Proton GE form factor & DCSB
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Find that slight changes in M(p2) on the domain 1 . p . 3 GeV have a
striking effect on the GE/GM proton form factor ratio

strong indication that position of a zero is very sensitive to underlying dynamics
and the nature of the transition from nonperturbative to perturbative QCD

Zero in GE = F1 − Q2

4M2
N
F2 largely determined by evolution of Q2 F2

F2 is sensitive to DCSB through the dynamically generated quark anomalous
electromagnetic moment – vanishes in conformal limit
the quicker the perturbative/conformal regime is reached the quicker F2 → 0

[I. C. Cloët, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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Pion & Nucleon TMDs
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Probing Transverse Momentum
quark polarizationleading

twist unpolarized [U] longitudinal [L] transverse [T]
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The new frontier in hadron physics is the 3D imaging of the quarks & gluons
inside hadrons and nuclei – TMDs and GPDs

parametrization of these functions is not sufficient – must calculate within a
QCD-connected framework

Fragmentation functions – which appear in e.g. SIDIS – are also particularly
important; they are challenging & interesting

potentially fragmentation functions can shed the most light on confinement and
DCSB – because they describe how a fast moving (massless) quark becomes a
tower of hadrons
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Pion TMD from its LFWFs
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DCSB results in broad pion LFWFs
at hadronic scales

dramatic changes in curvature in
conformal limit result

Using pion’s LFWFs straightforward
to make predictions for pion GPDs,
TMDs, etc; For TMDs:

f(x,k2
T ) ∝

∣∣ψ↑↓(x,k2
T )
∣∣+ k2

T

∣∣ψ↑↑(x,k2
T )
∣∣

Our result compared with Pasquini
& Schweitzer [PRD 90 014050 (2014)]

each result gives similar PDF but very
different TMD
illustration of the potential for TMDs to
differentiate between different frameworks
& thereby expose quark-gluon dynamics in QCD
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TMDs, Diquarks & Flavor Dependence
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Rigorously included transverse momentum
of diquark correlations in TMDs

This has numerous consequences:
scalar diquark correlations greatly increase

〈
k2
T

〉

find deviation from Gaussian anzatz and that TMDs do not factorize in x & k2
T

diquark correlations introduce a significant flavor dependence in the average
〈
k2
T

〉

[analogous to the quark-sector electromagnetic form factors]

Work is also underway for nucleon GPDs, and nuclear TMDs & GPDs
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Targets with Spin-1
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Probing Transverse Momentum
quark operatorleading
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A spin-1 target can have tensor polarization – 3 new T -even and 7 new
T -odd TMDs compared to nucleon

For DIS on spin-1 target there is one extra quark distribution:

bq1(x) =

∫
d2kT θ

q
LL(x,k2

T )− k2
T

2M2
θqTT (x,k2

T )
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TMDs for a Rho Meson
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Are spin-one TMDs interesting – do they contain new information?

important question for the EIC – Jefferson Lab figure-eight design particularly
suited to maintaining deuteron polarization

Find that the six T -even spin-one TMDs that have a nucleon analogy contain
few surprises

Note, the simplest spin-one target is the deuteron (Jπ = 1+) and with only
2.2 MeV binding the helicity and transversity TMDs are likely much smaller
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TMDs for a Rho Meson – Tensor Polarization
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The spin-one TMDs associated with a tensor polarized target have a number
of surprising features

The TMD θLL(xk2
T ) vanishes when x = 1/2 for all k2

T

x = 1/2 corresponds to zero relative momentum between constituents, that is,
s-wave contributions
therefore θLL(xk2

T ) only receives contributions from L > 1 components of the
wave function – sensitive measure of orbital angular momentum

Features hard to determine from a few moments – difficult for lattice QCD
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Conclusion
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To understand hadron masses
must understand the role of DCSB

Using DSEs find that DCSB drives
numerous effects in QCD, e.g.,
hadron masses, confinement and
many aspects of hadron structure

broading of pion PDA, maximum
of Q2 Fπ(Q2), etc

location of zero’s in form factors
– GEp, F d1p, etc – provide
tight constraints on QCD dynamics

predict zero in GEn/GMn

independent rate of change of DCSB

Tensor polarized spin-one targets
contain interesting new information
about hadron and nuclear structure
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Backup Slides
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Rainbow Ladder Truncation

−1
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+ q

p
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p
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q

p

p′

The most common symmetry preserving truncation is rainbow-ladder

1
4π g

2Dµν(p− k) Γν(p, k) −→ αeff(p− k)Dfree
µν (p− k) γν

Need model for αeff(k
2) – must agree with perturbative QCD for large k2

Maris–Tandy model is historically the most successful example [PRC 60, 055214 (1999)]

αeff(k
2) = πD

ω6 k
4 e−k

2/ω2

+ 24π
25

(
1− e−k2/µ2

)
ln−1

[
e2− 1+

(
1 + k2/Λ2

QCD
)2]

Satisfies vector & axial-vector WTIs

qµ Γµγqq(p
′, p) = Q̂q

[
S−1
q (p′)− S−1

q (p)
]

[em current conservation]

qµ Γµ,i5 (p′, p) = S−1(p′) γ5 ti + ti γ5 S
−1(p)

+ 2mΓiπ(p′, p) [DCSB]

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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Flavor separated proton form factors
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Prima facie, these experimental results are remarkable
u and d quark sector form factors have very different scaling behaviour

However, when viewed in context of diquark correlations
results are straightforward to understand

in proton (uud) the d quark is “bound” inside a scalar
diquark [ud] 70% of the time; u[ud] diquark =⇒ 1/Q2

Zero in F d1p a result of interference between scalar and axial-vector diquarks
location of zero indicates relative strengths – correlated with d/u ratio as x→ 1

[I. C. Cloët, W. Bentz, A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]
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Form Factors and Confinement
[P. T. P. Hutauruk, ICC and A. W. Thomas, Phys. Rev. C 94, no. 3, 035201 (2016)]
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Form factors must be a sensitive measure of confinement in QCD
but what are they telling us?
consider quark-sector kaon form factors

Perturbative QCD provides: FK+(Q2)/Fπ+(Q2)
Q2�ΛQCD−→ f2

K/f
2
π

Using NJL model find remarkable flavor dependence of K form factors
s-quark much harder than the u/d-quark
confinement? If probe strikes a light u-quark it is much harder for the hadron to
remain intact – compared to when an s quark is struck
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