Impacts of dynamical chiral symmetry breaking on hadron masses

Ian Cloët Argonne National Laboratory

The Proton Mass: At the Heart of Most Visible Matter

ECT*, 3-7 April 2017

Office of Science

DCSB Refresher

- \mathcal{L}_{QCD} invariant under: $SU(N_f)_L \otimes SU(N_f)_R \iff SU(N_f)_V \otimes SU(N_f)_A$
- For $N_f = 2$, $SU(N_f)_V$ transformations correspond to the isospin
 - hadron mass spectrum tells us nature largely respects isospin symmetry
 - $m_{\pi^-} \simeq m_{\pi^0} \simeq m_{\pi^+}, \ m_p \simeq m_n, \ m_{\Sigma^-} \simeq m_{\Sigma^0} \simeq m_{\Sigma^+}$
 - therefore $SU(N_f)_V$ is realized in the Wigner-Weyl mode
- $SU(N_f)_A$ transformations mix states of opposite parity
 - expect hadron mass spectrum to exhibit parity degeneracy

 $m_{a_1} - m_{\rho}; m_N - m_{N^*} \sim 500 \,\mathrm{MeV}$

- $m_u \simeq m_d \simeq 5$ MeV, cannot produce such large mass splittings
- therefore $SU(N_f)_A$ must be realized in the Nambu-Goldstone mode
- Chiral symmetry is broken dynamically;
 massless Goldstone bosons = pions

- $N^* \qquad J^{\pi} = \frac{1}{2}$
- $J^{\pi} = 1^+$

- $N = J^{\pi} = \frac{1}{2}^{+}$
- $\rho = J^{\pi} = 1^{-}$
- $J^{\pi} = 0^+$

 $J^{\pi} = 0^{-}$

ECT* 3-7 April 2017

DCSB Refresher

- \mathcal{L}_{QCD} invariant under: $SU(N_f)_L \otimes SU(N_f)_R \iff SU(N_f)_V \otimes SU(N_f)_A$
- For $N_f = 2$, $SU(N_f)_V$ transformations correspond to the isospin
 - hadron mass spectrum tells us nature largely respects isospin symmetry
 - $m_{\pi^-} \simeq m_{\pi^0} \simeq m_{\pi^+}, \ m_p \simeq m_n, \ m_{\Sigma^-} \simeq m_{\Sigma^0} \simeq m_{\Sigma^+}$
 - therefore $SU(N_f)_V$ is realized in the Wigner-Weyl mode

The hadronic matrix element of the energy-momentum tensor $\theta^{\mu\nu}$, at zero momentum transfer, is given by

$$\left\langle P \left| \theta^{\mu\nu} \right| P \right\rangle = 2 P^{\mu} P^{\nu}$$

In chiral limit therefore have

$$\left\langle \pi \left| \theta^{\mu}_{\,\mu} \right| \pi \right\rangle = 2 \, m_{\pi}^2 \to 0, \qquad \qquad \left\langle p \left| \theta^{\mu}_{\,\mu} \right| p \right\rangle = 2 \, m_p^2$$

To properly address the original of the proton mass need a framework that encapsulates DCSB.

r -	$J^{\pi} = 0$	

 $\frac{1}{2}^{+}$

QCD's Dyson-Schwinger Equations

- The equations of motion of QCD \iff QCD's Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - tractability \implies must implement a symmetry preserving truncation
- The most important DSE is QCD's gap equation \implies quark propagator

ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

- S(p) has correct perturbative limit
- mass function, M(p²), exhibits dynamical mass generation
- complex conjugate poles
 no real mass shell => confinement

QCDs Dyson-Schwinger Equations

Image courtesy of Gernot Eichmann

ECT* 3-7 April 2017

ETC!

DSEs – A closer look

• Not possible to solve tower of equations – start with gap equation

- need ansatz for *dressed gluon propagator* × *dressed quark-gluon vertex*
- truncation must preserve symmetries, e.g., electromagnetic current, chiral

Therefore both gluons and quarks posses dynamically generated masses

QCD dynamically generates its own infrared cutoffs

Beyond Rainbow Ladder Truncation

Include "anomalous chromomagnetic" term in quark-gluon vertex

 $\frac{1}{4\pi} g^2 D_{\mu\nu}(\ell) \Gamma_{\nu}(p',p) \rightarrow \alpha_{\rm eff}(\ell) D_{\mu\nu}^{\rm free}(\ell) \left[\gamma_{\nu} + i\sigma^{\mu\nu}q_{\nu} \tau_5(p',p) + \ldots \right]$

- In chiral limit *anomalous chromomagnetic* term can only appear through DCSB – since it is not chirally symmetric
- Expect strong gluon dressing to produce non-trivial structure for a dressed quark
 - recall dressing produces from massless quark a $M \sim 400 \,\mathrm{MeV}$ dressed quark
 - dressed quarks likely contain large amounts of orbital angular momentum
- Large anomalous chromomagnetic moment in the quark-gluon vertex – produces a large quark anomalous electromagnetic moment

• dressed quarks are not point particles!

ECT* 3-7 April 2017

Pion Structure

The Pion in QCD

2

- Today the pion is understood as both a bound state of a dressed-quark and a dressed-antiquark in QFT and the Goldstone mode associated with DCSB in QCD
- This dichotomous nature has numerous ramifications, e.g.:

 $m_{
ho}/2 \sim M_N/3 \sim 350 \,\mathrm{MeV}$ however $m_{\pi}/2 \simeq 0.2 \times 350 \,\mathrm{MeV}$

- pion is unusually light, the key is *dynamical chiral symmetry breaking* (DCSB)
- In QFT a two-body bound state (e.g. a pion or rho) is described by the Bethe-Salpeter equation (BSE):

• the kernel must yield a solution that encapsulates the consequences of DCSB, e.g., in chiral limit $m_{\pi} = 0$ & $m_{\pi}^2 \propto m_u + m_d$

) BSE wave function \Longrightarrow *light-front wave function* (LFWF) \Longrightarrow PDA

$$\psi(x, \mathbf{k}_T) = \int dk^- \ \chi_{\text{BSE}}(p, k), \qquad \varphi(x) = \int d\mathbf{k}_T \ \psi(x, \mathbf{k}_T)$$

Pion's Parton Distribution Amplitude

- **pion's PDA** $\varphi_{\pi}(x)$: *is a probability amplitude that describes the momentum distribution of a quark and antiquark in the bound-state's valence Fock state*
 - it's a function of the light-cone momentum fraction $x = \frac{k^+}{p^+}$ and the scale Q^2

PDAs enter numerous hard exclusive scattering processes

Pion's Parton Distribution Amplitude

The pion's PDA is defined by

$$f_{\pi} \varphi_{\pi}(x) = Z_2 \int \frac{d^4 k}{(2\pi)^2} \,\delta\left(k^+ - x \,p^+\right) \operatorname{Tr}\left[\gamma^+ \gamma_5 \,S(k) \,\Gamma_{\pi}(k,p) \,S(k-p)\right]$$

 φ_π(x): is the axial-vector projection of the pion's Bethe-Salpeter wave function onto the light-front

Pion PDA is a *scale dependent* non-perturbative quantity, which e.g., governs the Q² dependence of pion form factor in the asymptotic regime

$$Q^2 F_{\pi}(Q^2) \xrightarrow{Q^2 \to \infty} 16 \pi f_{\pi}^2 \alpha_s(Q^2)$$

ECT* 3-7 April 2017

Pion PDA from the DSEs

Both DSE results – each using a different Bethe-Salpeter kernel – exhibit a pronounced broadening compared with the asymptotic pion PDA

• scale of calculation is given by renormalization point $\xi = 2 \text{ GeV}$

A realization of DCSB on the light-front

ERBL evolution demonstrates that the pion's PDA remains broad & concave for all accessible scales in current and conceivable experiments

Broading of PDA influences the Q^2 evolution of the pion's EM form factor

Pion PDA from Lattice QCD

- however this expansion is guaranteed to converge rapidly only when Q² → ∞
 method results in a *double-humped* pion PDA not supported by BSE WFs
- Advocate using a generalized expansion

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha} (1-x)^{\alpha} \left[1 + \sum_{n=2,4,\dots} a_n^{\alpha+1/2}(Q^2) C_n^{\alpha+1/2}(2x-1) \right]$$

Find $\varphi_{\pi} \simeq x^{\alpha} (1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.24}$; good agreement with DSE: $\alpha \sim 0.52$

Pion PDA from Lattice QCD

Currently, lattice QCD can determine only one non-trivial moment, e.g.: $\int_{0}^{1} dx (2x-1)^{2} \varphi_{\pi}(x) = 0.27 \pm 0.04$

[V. M. Braun et al., Phys. Rev. D 74, 074501 (2006)]

- scale is $Q^2 = 4 \,\mathrm{GeV}^2$
- Standard practice to fit first coefficient of "*asymptotic expansion*" to moment

$$\varphi_{\pi}(x,Q^2) = 6 x \left(1-x\right) \left[1 + \sum_{n=2,4,\dots} a_n^{3/2}(Q^2) C_n^{3/2}(2x-1)\right]$$

- however this expansion is guaranteed to converge rapidly only when Q² → ∞
 method results in a *double-humped* pion PDA not supported by BSE WFs
- Advocate using a *generalized expansion*

$$\varphi_{\pi}(x,Q^2) = N_{\alpha} x^{\alpha} (1-x)^{\alpha} \left[1 + \sum_{n=2,4,\dots} a_n^{\alpha+1/2}(Q^2) C_n^{\alpha+1/2}(2x-1) \right]$$

Find $\varphi_{\pi} \simeq x^{\alpha}(1-x)^{\alpha}$, $\alpha = 0.35^{+0.32}_{-0.24}$; good agreement with DSE: $\alpha \sim 0.52$

Pion PDA from Lattice QCD – updated

Most recent lattice QCD moment:

$$\int_{0}^{1} dx \, (2 \, x - 1)^{2} \varphi_{\pi}(x) = 0.2361 \, (41) \, (39) \, (?)$$

[V. M. Braun, et al., Phys. Rev. D 92, no. 1, 014504 (2015)]

DSE prediction:

$$\int_{0}^{1} dx \, (2 \, x - 1)^2 \varphi_{\pi}(x) = 0.251$$

- Near complete agreement between DSE prediction and latest lattice QCD result
- Conclude that the pion PDA is a broad concave function
 - *double humped distributions are very likely for the pion*

Pion Elastic Form Factor

- Direct, symmetry-preserving computation of pion form factor predicts maximum in $Q^2 F_{\pi}(Q^2)$ at $Q^2 \approx 6 \,\mathrm{GeV^2}$
 - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as

- Find consistency between the *direct pion form factor calculation* and the QCD hard-scattering formula – if DSE pion PDA is used
 - 15% disagreement may be explained by higher order/higher-twist corrections
- Predict that QCD power law behavior with QCD's scaling law violations sets in at $Q^2 \sim 8 \,\text{GeV}^2$

Pion Elastic Form Factor

- Direct, symmetry-preserving computation of pion form factor predicts maximum in $Q^2 F_{\pi}(Q^2)$ at $Q^2 \approx 6 \,\mathrm{GeV^2}$
 - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as

- Find consistency between the *direct pion form factor calculation* and the QCD hard-scattering formula – if DSE pion PDA is used
 - 15% disagreement may be explained by higher order/higher-twist corrections
- Predict that QCD power law behavior with QCD's scaling law violations sets in at $Q^2 \sim 8 \,\text{GeV}^2$

Pion Elastic Form Factor

- Direct, symmetry-preserving computation of pion form factor predicts maximum in $Q^2 F_{\pi}(Q^2)$ at $Q^2 \approx 6 \,\mathrm{GeV^2}$
 - magnitude of this product is determined by strength of DCSB at all accessible scales

The QCD prediction can be expressed as

- Find consistency between the *direct pion form factor calculation* and the QCD hard-scattering formula – if DSE pion PDA is used
 - 15% disagreement may be explained by higher order/higher-twist corrections
- Predict that QCD power law behavior with QCD's scaling law violations sets in at $Q^2 \sim 8 \,\text{GeV}^2$

Nucleon Structure

Baryons in QFT

- A robust description of the nucleon as a bound state of 3 dressed-quarks can only be obtained within an approach that respects Poincaré covariance
- Such a framework is provided by the Poincaré covariant Faddeev equation

- sums all possible interactions between three dressed-quarks
- much of 3-body interaction can be absorbed into effecive 2-body interactions
- Faddeev eq. has solutions at discrete values of $p^2 (= M^2) \implies$ baryon spectrum
- A *prediction* of these approaches is that owing to DCSB in QCD strong diquark correlations exist within baryons
 - any interaction that describes color-singlet mesons also generates *non-pointlike* diquark correlations in the color- $\overline{3}$ channel

• where scalar (0^+) & axial-vector (1^+) diquarks most important for the nucleon

Baryons in QFT

- A robust description of the nucleon as a bound state of 3 dressed-quarks can only be obtained within an approach that respects Poincaré covariance
- Such a framework is provided by the Poincaré covariant Faddeev equation

- sums all possible interactions between three dressed-quarks
- much of 3-body interaction can be absorbed into effecive 2-body interactions
- Faddeev eq. has solutions at discrete values of $p^2 (= M^2) \implies$ baryon spectrum
- A *prediction* of these approaches is that owing to DCSB in QCD strong diquark correlations exist within baryons
 - any interaction that describes color-singlet mesons also generates *non-pointlike* diquark correlations in the color- $\overline{3}$ channel

• where scalar (0^+) & axial-vector (1^+) diquarks most important for the nucleon

Diquarks

• typically diquark sizes are similar to analogous mesons: $r_{0^+} \sim r_{\pi}, \; r_{1^+} \sim r_{
ho}$

These dynamic qq correlations are not the static diquarks of old

- all quarks participate in all diquark correlations
- in a given baryon the Faddeev equation predicts a probability for each diquark cluster
- for the nucleon: scalar $(0^+) \sim 70\%$ axial-vector $(1^+) \sim 30\%$
- Faddeev equation spectrum has significant overlap with constituent quark model and limited relation to Lichtenberg's quark+diquark model
- Mounting evidence from hadron structure⁵
 (e.g. PDFs, form factors) and lattice

Diquark Spectrum

- DCSB results in a mass spectrum for the diquarks
- For nucleon in non-relativitic limit parity dictates that D_S and D_{AV} are in s-wave, and D_P and D_V in p-wave – opposite is true for N*(1535)
- This interplay and DCSB produce bulk features of the baryon spectrum below ~2 GeV
- Spectrum is given by values of p² with eigenvalue one
 - with parity +1 ground state is nucleon, parity -1 ground state is N*(1535), etc

Large chromo-magnetic moment is driven by DCSB

Quark anomalous magnetic moment required for good agreement with data

- important for low to moderate Q^2
- power law suppressed at large Q^2

Form factor measurements provide information on *quark-photon vertex* and by using the DSEs the *quark-gluon vertex*

• knowledge of quark–gluon vertex provides $\alpha_s(Q^2)$ within DSEs \Leftrightarrow confinement

- Dressed quark anomalous chromo- (=> electro-) magnetic moment has only a minor impact on neutron Sachs form factor ratio – *cancellations*
- The DSE *prediction* was confirmed on domain 1.5 ≤ Q² ≤ 3.5 GeV²
 shortcomings in other approaches have been exposed
- Predict a zero-crossing in G_{En}/G_{Mn} at Q² ~ 11 GeV²
 zero-crossing driven by correlations in nucleon wave function
 Turn over in G_{En}/G_{Mn} can be tested at the Jefferson Lab

Neutron G_E/G_M **Ratio**

[S. Riordan et al., Phys. Rev. Lett. 105, 262302 (2010)]

- Dressed quark anomalous chromo- (=> electro-) magnetic moment has only a minor impact on neutron Sachs form factor ratio – *cancellations*
- The DSE *prediction* was confirmed on domain 1.5 ≤ Q² ≤ 3.5 GeV²
 shortcomings in other approaches have been exposed
- Predict a zero-crossing in G_{En}/G_{Mn} at $Q^2 \sim 11 \,\mathrm{GeV^2}$
 - zero-crossing driven by correlations in nucleon wave function
 - Turn over in G_{En}/G_{Mn} can be tested at the Jefferson Lab

- Dressed quark anomalous chromo- (=> electro-) magnetic moment has only a minor impact on neutron Sachs form factor ratio – cancellations
- The DSE *prediction* was confirmed on domain 1.5 ≤ Q² ≤ 3.5 GeV²
 shortcomings in other approaches have been exposed
- Predict a zero-crossing in G_{En}/G_{Mn} at Q² ~ 11 GeV²
 zero-crossing driven by correlations in nucleon wave function
 Turn over in G_{En}/G_{Mn} can be tested at the Jefferson Lab

Proton G_E form factor & DCSB

[I. C. Cloët, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]

Find that slight changes in $M(p^2)$ on the domain $1 \leq p \leq 3 \text{ GeV}$ have a striking effect on the G_E/G_M proton form factor ratio

• strong indication that position of a zero is very sensitive to underlying dynamics and the nature of the transition from nonperturbative to perturbative QCD

There in
$$G_E = F_1 - \frac{Q^2}{4M_N^2} F_2$$
 largely determined by evolution of $Q^2 F_2$

- F_2 is sensitive to DCSB through the dynamically generated quark anomalous electromagnetic moment *vanishes in conformal limit*
- the quicker the perturbative/conformal regime is reached the quicker $F_2 \rightarrow 0$

Δ

Pion & Nucleon TMDs

The new frontier in hadron physics is the 3D imaging of the quarks & gluons inside hadrons and nuclei – TMDs and GPDs

- parametrization of these functions is not sufficient must calculate within a QCD-connected framework
- Fragmentation functions which appear in e.g. SIDIS are also particularly important; they are challenging & interesting
 - potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark becomes a tower of hadrons

- The new frontier in hadron physics is the 3D imaging of the quarks & gluons inside hadrons and nuclei TMDs and GPDs
 - parametrization of these functions is not sufficient must calculate within a *QCD*-connected framework
- Fragmentation functions which appear in e.g. SIDIS are also particularly important; they are challenging & interesting
 - potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark becomes a tower of hadrons

The new frontier in hadron physics is the 3D imaging of the quarks & gluons inside hadrons and nuclei – TMDs and GPDs

- parametrization of these functions is not sufficient must calculate within a *QCD*-connected framework
- Fragmentation functions which appear in e.g. SIDIS are also particularly important; they are challenging & interesting
 - potentially fragmentation functions can shed the most light on confinement and DCSB – because they describe how a fast moving (massless) quark becomes a tower of hadrons

Pion TMD from its LFWFs

- DCSB results in broad pion LFWFs at hadronic scales
 - dramatic changes in curvature in conformal limit result
- Using pion's LFWFs straightforward to make predictions for pion GPDs, TMDs, etc; For TMDs:

$$f(x, \boldsymbol{k}_T^2) \propto \left|\psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2)\right| + \boldsymbol{k}_T^2 \left|\psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2)\right|$$

- Our result compared with Pasquini & Schweitzer [PRD 90 014050 (2014)]
 - each result gives similar PDF but very different TMD
 - illustration of the potential for TMDs to differentiate between different frameworks & thereby expose quark-gluon dynamics in QCD

^o 2 0 0.2 3–7 April 2017 0.05

24/30

Pion TMD from its LFWFs

- DCSB results in broad pion LFWFs at hadronic scales
 - dramatic changes in curvature in conformal limit result
- Using pion's LFWFs straightforward to make predictions for pion GPDs, TMDs, etc; For TMDs:

$$f(x, \boldsymbol{k}_T^2) \propto \left|\psi_{\uparrow\downarrow}(x, \boldsymbol{k}_T^2)\right| + \boldsymbol{k}_T^2 \left|\psi_{\uparrow\uparrow}(x, \boldsymbol{k}_T^2)\right|$$

- Our result compared with Pasquini & Schweitzer [PRD 90 014050 (2014)]
 - each result gives similar PDF but very different TMD
 - illustration of the potential for TMDs to differentiate between different frameworks & thereby expose quark-gluon dynamics in QCD

TMDs, Diquarks & Flavor Dependence

- Rigorously included transverse momentum of diquark correlations in TMDs
- This has numerous consequences:
 - scalar diquark correlations greatly increase $\left\langle k_T^2 \right\rangle$
 - find deviation from Gaussian anzatz and that TMDs do not factorize in $x \& k_T^2$
 - diquark correlations introduce a significant flavor dependence in the average $\langle k_T^2 \rangle$ [analogous to the quark-sector electromagnetic form factors]

Work is also underway for nucleon GPDs, and nuclear TMDs & GPDs

 Ψ_{a}

 p_q

TMDs, Diquarks & Flavor Dependence

- Rigorously included transverse momentum of diquark correlations in TMDs
- This has numerous consequences:
 - scalar diquark correlations greatly increase $\left\langle k_T^2 \right\rangle$
 - find deviation from Gaussian anzatz and that TMDs do not factorize in $x \& k_T^2$
 - diquark correlations introduce a significant flavor dependence in the average $\langle k_T^2 \rangle$ [analogous to the quark-sector electromagnetic form factors]

Work is also underway for nucleon GPDs, and nuclear TMDs & GPDs

Ψ,

Targets with Spin-1

- A spin-1 target can have tensor polarization 3 new *T*-even and 7 new *T*-odd TMDs compared to nucleon
- For DIS on spin-1 target there is one extra quark distribution:

$$b_1^q(x) = \int d^2 \mathbf{k}_T \; \theta_{LL}^q(x, \mathbf{k}_T^2) - \frac{\mathbf{k}_T^2}{2 M^2} \; \theta_{TT}^q(x, \mathbf{k}_T^2)$$

Are spin-one TMDs interesting – do they contain new information?

- important question for the EIC Jefferson Lab figure-eight design particularly suited to maintaining deuteron polarization
- Find that the six T-even spin-one TMDs that have a nucleon analogy contain few surprises
- Note, the simplest spin-one target is the deuteron (J^π = 1⁺) and with only 2.2 MeV binding the helicity and transversity TMDs are likely much smaller

TMDs for a Rho Meson

Are spin-one TMDs interesting – do they contain new information?

- important question for the EIC Jefferson Lab figure-eight design particularly suited to maintaining deuteron polarization
- Find that the six *T*-even spin-one TMDs that have a nucleon analogy contain few surprises
- Note, the simplest spin-one target is the deuteron (J^π = 1⁺) and with only 2.2 MeV binding the helicity and transversity TMDs are likely much smaller

TMDs for a Rho Meson – Tensor Polarization

- The spin-one TMDs associated with a tensor polarized target have a number of surprising features
- The TMD $\theta_{LL}(x \mathbf{k}_T^2)$ vanishes when x = 1/2 for all \mathbf{k}_T^2
 - x = 1/2 corresponds to zero relative momentum between constituents, that is, s-wave contributions
 - therefore $\theta_{LL}(x \mathbf{k}_T^2)$ only receives contributions from $L \ge 1$ components of the wave function *sensitive measure of orbital angular momentum*

Features hard to determine from a few moments – difficult for lattice QCD

TMDs for a Rho Meson – Tensor Polarization

- The spin-one TMDs associated with a tensor polarized target have a number of surprising features
- The TMD $\theta_{LL}(x \mathbf{k}_T^2)$ vanishes when x = 1/2 for all \mathbf{k}_T^2
 - x = 1/2 corresponds to zero relative momentum between constituents, that is, s-wave contributions
 - therefore $\theta_{LL}(x \mathbf{k}_T^2)$ only receives contributions from $L \ge 1$ components of the wave function *sensitive measure of orbital angular momentum*

Features hard to determine from a few moments – difficult for lattice QCD

Conclusion

- To understand hadron masses must understand the role of DCSB
- Using DSEs find that DCSB drives numerous effects in QCD, e.g., hadron masses, confinement and many aspects of hadron structure
 - broading of pion PDA, maximum of $Q^2 F_{\pi}(Q^2)$, etc
 - location of zero's in form factors $-G_{Ep}$, F_{1p}^d , etc – provide tight constraints on QCD dynamics
 - predict zero in G_{En}/G_{Mn} independent rate of change of DCSB
- Tensor polarized spin-one targets contain interesting new information about hadron and nuclear structure

Backup Slides

Rainbow Ladder Truncation

The most common symmetry preserving truncation is rainbow-ladder

$$\frac{1}{4\pi} g^2 D_{\mu\nu}(p-k) \Gamma_{\nu}(p,k) \longrightarrow \alpha_{\rm eff}(p-k) D_{\mu\nu}^{\rm free}(p-k) \gamma_{\nu}$$

Need model for $\alpha_{\rm eff}(k^2)$ – must agree with perturbative QCD for large k^2

• Maris-Tandy model is historically the most successful example [PRC 60, 055214 (1999)]

$$\alpha_{\rm eff}(k^2) = \frac{\pi D}{\omega^6} \, k^4 \, e^{-k^2/\omega^2} + \frac{24\pi}{25} \left(1 - e^{-k^2/\mu^2} \right) \ln^{-1} \! \left[e^2 - 1 + \left(1 + k^2/\Lambda_{\rm QCD}^2 \right)^2 \right]$$

Satisfies vector & axial-vector WTIs $q_{\mu} \Gamma^{\mu}_{\gamma q q}(p', p) = \hat{Q}_{q} \left[S_{q}^{-1}(p') - S_{q}^{-1}(p) \right]$ [em current conservation] $q_{\mu} \Gamma^{\mu, i}_{5}(p', p) = S^{-1}(p') \gamma_{5} t_{i} + t_{i} \gamma_{5} S^{-1}(p)$ $+ 2 m \Gamma^{i}_{\pi}(p', p) \text{[DCSB]}$

 $\overline{\mathcal{M}}$

Rainbow Ladder Truncation

Need model for α_{eff}(k²) – must agree with perturbative QCD for large k²
 Qin–Chang model is a modern update [PRC 84, 042202 (2011)]

$$\alpha_{\rm eff}(k^2) = \frac{\pi D}{\omega^4} k^2 e^{-k^2/\omega^2} + \frac{24\pi}{25} \left(1 - e^{-k^2/\mu^2} \right) \ln^{-1} \left[e^2 - 1 + \left(1 + k^2/\Lambda_{\rm QCD}^2 \right)^2 \right]$$

Satisfies vector & axial-vector WTIs 14 $DSEs - \omega = 0.5$ - DSEs – $\omega = 0.6$ 12 $q_{\mu} \Gamma^{\mu}_{\gamma a a}(p', p) = \hat{Q}_{a} \left[S_{a}^{-1}(p') - S_{a}^{-1}(p) \right]$ S. x. Oin et al., Phys. Rev. C 84, 042202 (2011) $\frac{1}{\pi} \alpha_{\text{eff}}(k^2)$ 10 8 [em current conservation] 6 $q_{\mu} \Gamma_{5}^{\mu,i}(p',p) = S^{-1}(p') \gamma_{5} t_{i} + t_{i} \gamma_{5} S^{-1}(p)$ 20 $+2m\Gamma_{\pi}^{i}(p',p)$ [DCSB] 0 0.51.0 1.52.0 k [GeV ECT* 3-7 April 2017 32/30

Flavor separated proton form factors

Prima facie, these experimental results are remarkable

- u and d quark sector form factors have very different scaling behaviour
- However, when viewed in context of diquark correlations results are straightforward to understand
 - in proton (uud) the d quark is "bound" inside a scalar diquark [ud] 70% of the time; u[ud] diquark ⇒ 1/Q²

• Zero in F_{1p}^d a result of interference between scalar and axial-vector diquarks • location of zero indicates relative strengths – correlated with d/u ratio as $x \rightarrow 1$ ECT^* 3-7 April 2017 33/30

Form Factors and Confinement

Form factors must be a sensitive measure of confinement in QCD

- but what are they telling us?
- consider quark-sector kaon form factors
- Perturbative QCD provides: $F_{K^+}(Q^2)/F_{\pi^+}(Q^2) \xrightarrow{Q^2 \gg \Lambda_{QCD}} f_K^2/f_{\pi^+}^2$
- Using NJL model find remarkable flavor dependence of K form factors
 - s-quark much harder than the u/d-quark
 - confinement? If probe strikes a light *u*-quark it is much harder for the hadron to remain intact compared to when an *s* quark is struck