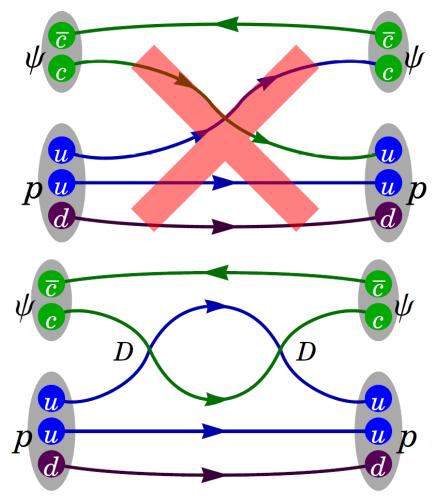


Motivation

§ Unique Probe for QCD Effects

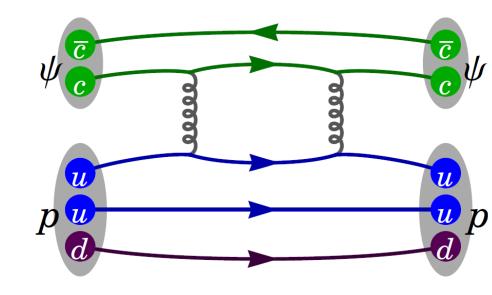
- Heavy quarkonia share no valence quarks with nuclei
- Normally dominant quark exchange suppressed to second order
- Dominated by two-gluon exchange (color van der Waals)
- Color Stark effect:
 Chromoelectric field induces
 dipoles in neutral hadrons
 that interact



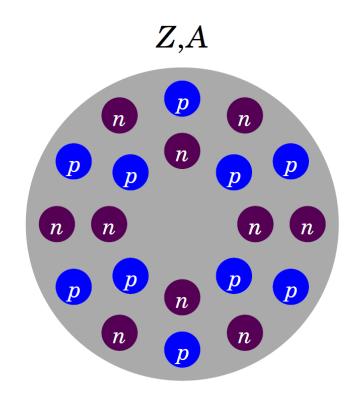
Motivation

§ Unique Probe for QCD Effects

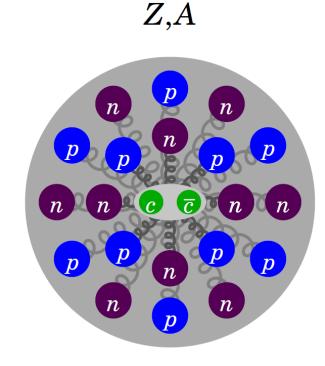
- Heavy quarkonia share no valence quarks with nuclei
- Normally dominant quark exchange suppressed to second order
- Dominated by two-gluon exchange (color van der Waals)
- Color Stark effect:
 Chromoelectric field induces
 dipoles in neutral hadrons
 that interact

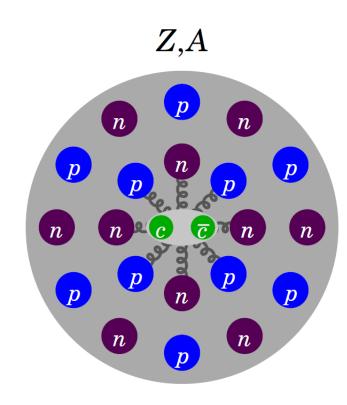


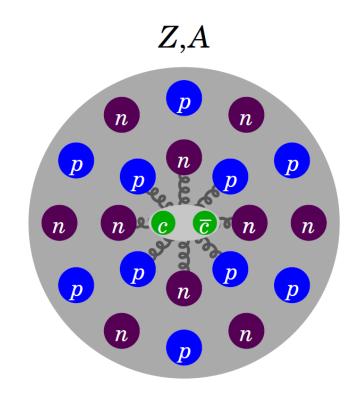
Motivation


§ Unique Probe for QCD Effects

- Heavy quarkonia share no valence quarks with nuclei
- Normally dominant quark exchange suppressed to second order
- Dominated by two-gluon exchange (color van der Waals)
- Color Stark effect: Chromoelectric field induces dipoles in neutral hadrons that interact




- Brodsky et al. [PRL64,1011 (1990)]
 noted features of pp scattering near
 open-charm threshold
- No Pauli blocking; no quark-exchange $\eta_c h$: 19 MeV, η_c^9 Be: 407 MeV(!)
- Wasson [PRL67,2237 (1991)] points out the nucleus is not pointlike
- Charm binding saturates for large A $\eta_c h$: 0.8 MeV, η_c^{208} Pb: 27 MeV


- Brodsky et al. [PRL64,1011 (1990)]
 noted features of pp scattering near
 open-charm threshold
- No Pauli blocking; no quark-exchange $\eta_c h$: 19 MeV, η_c^9 Be: 407 MeV(!)
- Wasson [PRL67,2237 (1991)] points out the nucleus is not pointlike
- Charm binding saturates for large A $\eta_c h$: 0.8 MeV, η_c^{208} Pb: 27 MeV

- Brodsky et al. [PRL64,1011 (1990)]
 noted features of pp scattering near
 open-charm threshold
- No Pauli blocking; no quark-exchange $\eta_c h$: 19 MeV, η_c^9 Be: 407 MeV(!)
- Wasson [PRL67,2237 (1991)] points out the nucleus is not pointlike
- Charm binding saturates for large A $\eta_c h$: 0.8 MeV, η_c^{208} Pb: 27 MeV

- Luke, Manohar, Savage [PLB288,355 (1992)] use heavy-quark expansion and look at leading Stark effect using OPE
- At saturation: ΥA : 4 MeV, $J/\psi A$: 11 MeV
- Induced dipole depends on radius of quarkonium like r^3 ; excited ψ' has huge radius
- Excited state becomes ground state in nuclear matter! $\psi'(2s)A$: 700 MeV(!!)

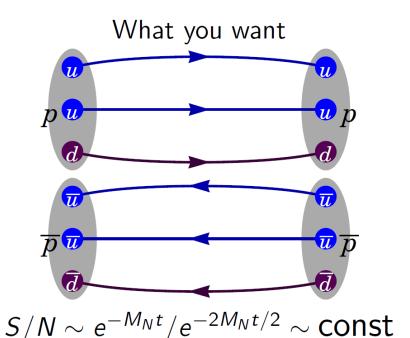
- Luke, Manohar, Savage [PLB288,355 (1992)] use heavy-quark expansion and look at leading Stark effect using OPE
- At saturation: ΥA : 4 MeV, $J/\psi A$: 11 MeV
- Induced dipole depends on radius of quarkonium like r^3 ; excited ψ' has huge radius
- Excited state becomes ground state in nuclear matter! $\psi'(2s)A$: 700 MeV(!!)

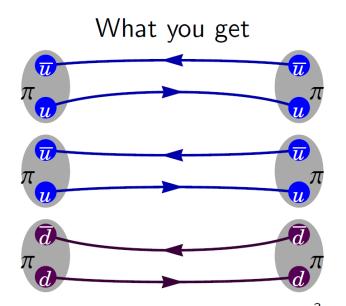
More History

§ Many additional model calculations; small selection shown

- Shevchenko [PLB392,457 (1997)] uses vacuum-correlator method No binding(?) except for very large nuclei
- de Teramond, Espinoza, Ortega-Rodriguez [PRD58,034012 (1998)] Tune their potential to pp spin correlations; No binding in light nuclei η_c ⁶Li: 0.1 MeV, η_c ²⁰⁸Pb: 9 MeV
- Lee and Ko [PRC67,038202 (2000)] look again at ψ' at saturation J/ψ A: 5 MeV, $\psi'(3686)$ A: 130 MeV
- Thomas [PRC83,065208 (2011)] uses quark-meson coupling model J/ψ α : 5 MeV, J/ψ ²⁰⁸Pb: 18 MeV

Experimental Prospects


- Long history of proposals to measure charmonium-nucleus binding
 - ATHENNA 12-GeV upgrade at CEBAF (JLab) (ep scattering)
 - PANDA at FAIR (GSI) ($\bar{p}p$ scattering)
- Also attempts to measure nucleus-bound ϕ , ω , η' or η
- ηh : 4(4) MeV(??) at MAMI [PRL92,252001 (2004)] not confirmed by COSY; some theoretical problems
- COSY-GEM [PRC79,012201 (2009)] found ${}_{\eta}^{25}$ Mg: 12(2) MeV
- Models of other mesic nuclei
 - [PRC34,1845 (1986)]: A < 12 unbound, ηA : 17 MeV
 - Thomas predicts ηA : 90 MeV at saturation
 - [Prog.Th.Phys.124,147 (2010)]: ϕA : 4–40 MeV at saturation



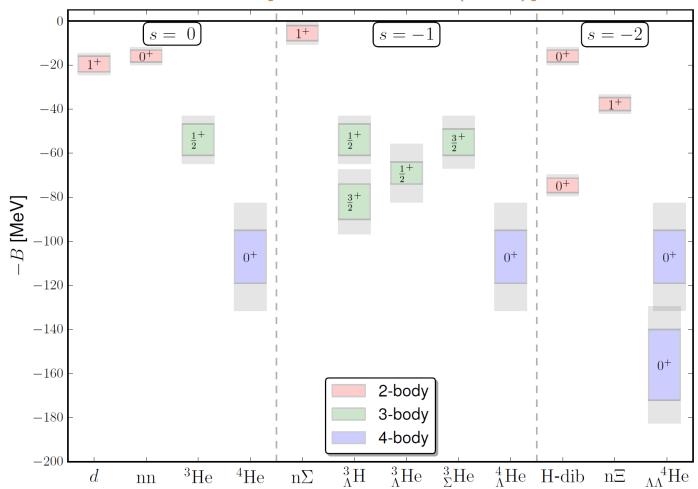
What Can LQCD Do?

§ Signal-to-noise problem: hard to calculate nuclei

Recall that variance is $\sigma_O^2 = \langle O^2 \rangle - \langle O \rangle^2$. For a nucleon correlator, our operator is $O \propto qqq(t) \, \bar{q}\bar{q}\bar{q}(0)$

 $\sim e^{-M_N t}/e^{-3M_\pi t/2} \sim e^{-(M_N - \frac{3}{2}M_\pi)t}$

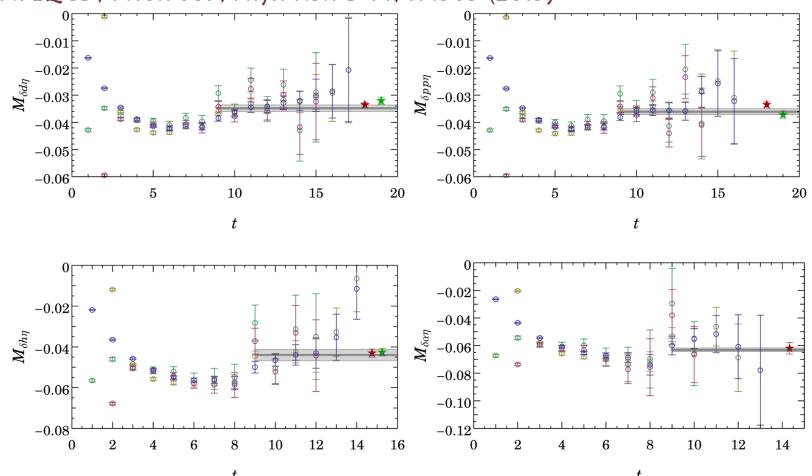
§ For nucleus
$$A = \exp\left[-A(M_N - 3/2m_\pi)t\right]$$


What Can LQCD Do?

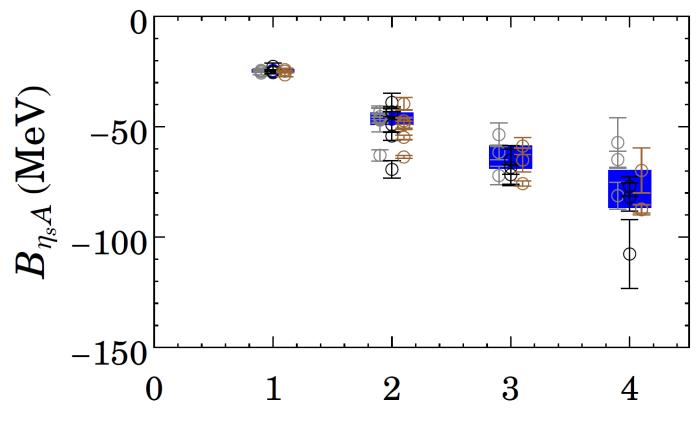
- Work at the SU(3) symmetric point: $M_{\pi} \approx 800 \text{ MeV}$
- NPLQCD Calculation [PRD87,034506 (2012)]
 - Isotropic 2+1-flavor 800-MeV O(a)-improved Wilson-clover fermions
 - $a_s = 0.145 \text{ fm}$
 - 3 volumes: 3.4 fm, 4.5 fm and 6.7 fm
 - Very high statistics: $72 \times 3822 \ (3.4 \ \text{fm}), \ 48 \times 3050 \ (4.5 \ \text{fm}), \ 54 \times 1905 \ (6.7 \ \text{fm})$
- Several sources and smearings available for each correlator

What Can LQCD Do?

- Work at the SU(3) symmetric point: $M_{\pi} \approx 800 \text{ MeV}$
- NPLQCD Calculation [PRD87,034506 (2012)]



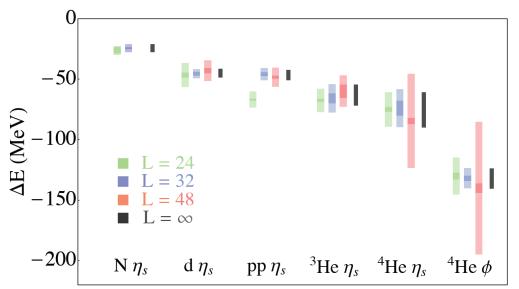
η_s -A Binding Effective Masses

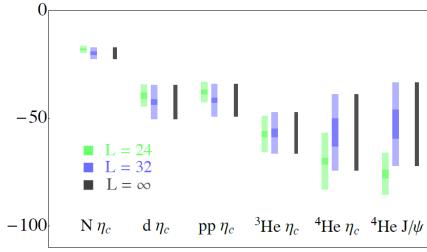

$$\mathcal{R}(t) = \frac{C_{\mathcal{A}\mathcal{B}}(t)}{C_{AB}(t)C_{\overline{Q}\Gamma Q}(t)} \to Ze^{-(E_{12}-(E_1+E_2))(t_f-t_i)}$$

NPLQCD, 1410.7069, Phys. Rev. D 91, 114503 (2015)

§ Estimate systematic errors

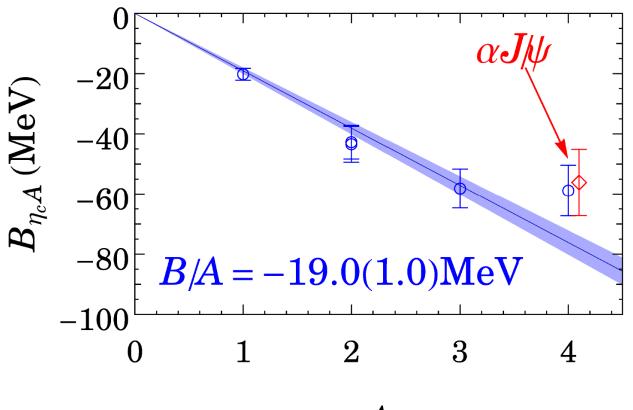
NPLQCD, 1410.7069, Phys. Rev. D 91, 114503 (2015)




 \boldsymbol{A}

§ Estimate systematic errors

NPLQCD, 1410.7069, Phys. Rev. D 91, 114503 (2015)


η_s -Nucleus Binding vs A

NPLQCD, 1410.7069, Phys. Rev. D 91, 114503 (2015) B/A = -23.4(5) MeV $\Delta \mathrm{E}_{A\,\eta_s}$ (MeV $B/A \sim \alpha_V - \alpha_S A^{-1/3}$ -100 $^{4}{\rm He}\,\phi$ =132.1(8.1) MeV

Charmonium-Nucleus Binding

NPLQCD, 1410.7069, Phys. Rev. D 91, 114503 (2015)

 $B_{\rm phys}^{\rm NM} \lesssim 40 \,\,{\rm MeV}$

Summary and Outlook

Progress So Far

- Now possible to explore gluonic nuclear interactions up to A=4
- η_s has an attractive interaction for all $A \leq 4$
- Multiple volumes show consistent bound state
- Energy shift linear in A with slope $B_{\eta_s A} = 23.4(5) \text{ MeV}/A$
- ϕ - α has a deeply bound state with $B_{\phi\alpha} = 134(14)$ MeV
- Good signal in charmonium, most bindings close to strange

Future Directions

- Study coupled channels (e.g. $N\phi$ - ΛK^*)
- Examine boosted systems
- Excited states?
- Move toward lighter pions

