Early Results from GlueX Experiment

E.Chudakov ${ }^{1}$

${ }^{1}$ JLab

Presented at Second Workshop on the Proton Mass ECT*, Trento, 3-7 April 2017

Outline

(1) Physics motivation

- QCD and Spectroscopy
- Search for hybrid mesons
(2) Experiment GlueX in Hall D at JLab
- Apparatus
- First runs: performance and early results
- Photoproduction by linearly polarized photons
- J / ψ Photoproduction near threshold
- Observations of various known mesonic resonances
(3) Outlook

Masses of Hadrons

- Quark Model was a big success!
- Flavor SU(3) symmetry for "constituent" quarks
- Postulated observables: $(q \bar{q}) \&(q q q)$
- QCD: exact color SU(3) symmetry
- Asymptotic freedom; Confinement
- The masses are generated dynamical ly. Challenges - the topic of the Workshop!

Further Insights from Spectroscopy? QCD does not limit the bound states to $(q \bar{q}) \&(q q q)$. Do others exist?

- LQCD predicts states like "hybrids"
- Probing our understanding of the mass scale and the binding energy

Initial anzatz

based on flavor SU(3)

color SU(3) singlets

Masses of Hadrons

- Quark Model was a big success!
- Flavor SU(3) symmetry for "constituent" quarks
- Postulated observables: $(q \bar{q}) \&(q q q)$
- QCD: exact color SU(3) symmetry
- Asymptotic freedom; Confinement
- The masses are generated dynamically. Challenges - the topic of the Workshop!

Initial anzatz
based on flavor SU(3)

Further Insights from Spectroscopy? QCD does not limit the bound states to $(q \bar{q}) \&(q q q)$ Do others exist?

- LQCD predicts states like "hybrids"
- Probing our understanding of the mass scale and the binding energy

Masses of Hadrons

- Quark Model was a big success!
- Flavor $\operatorname{SU}(3)$ symmetry for "constituent" quarks
- Postulated observables: $(q \bar{q}) \&(q q q)$
- QCD: exact color SU(3) symmetry
- Asymptotic freedom; Confinement
- The masses are generated dynamically. Challenges - the topic of the Workshop!

Initial anzatz
based on flavor SU(3) color SU(3) singlets

Further Insights from Spectroscopy?
QCD does not limit the bound states to ($q \bar{q}$) \& ($q q q$). Do others exist?

- LQCD predicts states like "hybrids"
- Probing our understanding of the mass scale and the binding energy
"exotic" hadrons

etc

$3 / 24$

Experimental evidence for "Exotic" hadrons

Multi-quark candidates

- Numerous narrow signals $X, Y, Z \rightarrow J / \psi$ or Υ
- Experimentally well established: Belle, BaBar, CDF, BES, LHCb etc
- Interpretation?
- Threshold cusps
- "Molecules" of color singlets
- Color multiplets

$$
P \rightarrow p J / \psi
$$

Hybrid candidates

- Relatively weak evidence
- Experiments: LEAR, E852, VES, COMPASS etc $p \bar{p}, \pi^{-} p$

COMPASS

COMPASS Collab., PLB 740, 303 (2015)

$$
\begin{gathered}
m\left(\eta^{\prime} \pi^{-}\right)\left[\mathrm{GeV} / c^{2}\right] \\
4 / 24
\end{gathered}
$$

erfon Lab

Meson spectroscopy

Constituent quark model

Gluonic excitations \Rightarrow hybrid mesons ?

- Predicted by models, LQCD
- "Constituent gluon": LQCD: $1^{+-}, 1-1.5 \mathrm{GeV}$
- Exotic QN: excellent signature
of a new degree of freedom no mixing with the regular $\bar{q} q$ states

Meson spectroscopy

Constituent quark model

Gluonic excitations \Rightarrow hybrid mesons ?

- Predicted by models, LQCD
- "Constituent gluon": LQCD: $1^{+-}, 1-1.5 \mathrm{GeV}$
- Exotic QN: excellent signature of a new degree of freedom no mixing with the regular $\bar{q} q$ states

Lattice QCD - the Meson Spectra

J.Dudek et al PRD 83 (2011); PRD 84 (2011), PRD 88 (2013) Hybrids identified: States with non-trivial gluonic fields

Calculations for $m_{\pi} \sim 400 \mathrm{MeV}$
Orange frames - lightest hybrids

Hybrids: expected features and ways to detect

LQCD: Masses

Models: Decays

- $1^{-+} \pi_{1}, \eta_{1} \ldots \sim 2.0-2.4 \mathrm{GeV} / \mathrm{c}^{2}$

$$
0^{+-} b_{0}, h_{0} \ldots \sim 2.3-2.5 \mathrm{GeV} / \mathrm{c}^{2}
$$

- 「 tot $\sim 0.1-0.5 \mathrm{GeV} / \mathrm{c}^{2}$

$$
2^{+-} b_{2}, h_{2} \ldots \sim 2.4-2.6 \mathrm{GeV} / \mathrm{c}^{2}
$$

- Final states: multiple $\pi^{ \pm}$and γ

No calculations for the decay widths, couplings or cross sections so far.
Photoproduction by linearly polarized photons

Exchange particle	Final states		
\mathcal{P}	0^{++}	$2^{+-}, 0^{+-}$	b°, h, h^{\prime}
π°	0^{-+}	2^{+-}	$b_{2}^{\circ}, h_{2}, h_{2}^{\prime}$
$\pi^{ \pm}$	0^{-+}	1^{-+}	$\pi_{1}^{ \pm}$
ω	1^{--}	1^{-+}	$\pi_{1}, \eta_{1}, \eta_{1}^{\prime}$

Can couple to all 3 exotic nonets
How to detect the hybrids?

- Detect the final states (exclusive reactions)
- Identify the QN using the Partial Wave Analysis (PWA)

Photon linear polarization - a filter on naturality - helps

GlueX Experiment

- GlueX Features
- Hermeticity and uniform acceptance
- High statistics
- Beam: Coherent Bremsstrahlung \Rightarrow linearly polarized photons in coherent peak
- Considerable theoretical support for the PWA (JPAC)
- Approved beam time
- GlueX-I 120 days at $\sim 10 \mathrm{MHz} \gamma /$ peak , $\mathcal{L}_{\text {int }} \sim 0.1 \mathrm{fb}^{-1}$
- GlueX-II,III 220 days at $\sim 50 \mathrm{MHz} \gamma /$ peak with DIRC $\mathcal{L}_{\text {int }} \sim 1 \mathrm{fb}^{-1}$

The GlueX Collaboration

Arizona State, Athens, Carnegie Mellon, Catholic University, Univ. of Connecticut, Florida International, Florida State, George Washington, Glasgow, GSI, Indiana University, ITEP, Jefferson Lab, U. Mass. Amherst, MIT, MEPhi, Norfolk State, North Carolina A\&T, Univ. North Carolina Wilmington, Northwestern, Santa Maria, University of Regina, W\&M, Wuhan, and Yerevan Physics Institute.

Over 120 collaborators from 25 institutions.

Hall D/GlueX Photon beam line

- $12 \mathrm{GeV} e^{-}$beam $0.05-2.2 \mu \mathrm{~A}$
- Coherent Bremsstrahlung on diamond crystal
- $20-50 \mu \mathrm{~m}$ diamond: coherent $<25 \mu \mathrm{rad}$
- Collimation to suppress the incoherent part
- Coherent peak $8.4-9.0 \mathrm{GeV} \quad \mathcal{P} \sim 40 \%$ Photon flux $10-100 \mathrm{MHz}$ in the peak
- Energy/polarization measured:
- Tagger spectrometer $\sigma_{E} / E \sim 0.1 \%$
- Triplet polarimeter $\gamma e^{-} \rightarrow e^{-} e^{+} e^{-} \Rightarrow$ $\sigma_{\mathcal{P}} / \mathcal{P} \sim 2 \%$

Hall D/GlueX Spectrometer and DAQ

Photoproduction $\gamma p 15 \mathrm{kHz}$ for a 100 MHz beam
Beam $10 \mathrm{MHz} / \mathrm{GeV}$: inclusive trigger $20 \mathrm{kHz} \Rightarrow \mathrm{DAQ} \Rightarrow$ tape Beam $50 \mathrm{MHz} / \mathrm{GeV}$: inclusive trigger $100 \mathrm{kHz} \Rightarrow \mathrm{DAQ} \Rightarrow \mathrm{L} 3$ farm \Rightarrow tape

Hall D

Hall D/GlueX Data taking Status

- Fall 2014 - Spring 2015: commissioning
- Spring 201612 GeV Engineering run
- Commissioning is complete
- Data for early physics results $\sim 22 \mathrm{G}$ events recorded, 7 G events fully meet the specs
- Spring 2017 11.65 GeV Physics run
- 50 G events, $\mathcal{L}_{\text {int }} \sim 20 \mathrm{pb}^{-1} /$ peak (20% of GlueX-I)
- Plans to finish the data processing by mid-July

Hall D/GlueX Beam: Coherent Bremsstrahlung

- 20-50 $\mu \mathrm{m}$ thick diamond radiators
- Precision alignment using a goniometer

Polarization measurements

- Derived from the spectrum
- Triple polarimeter
$\gamma e^{-} \rightarrow e^{+} e^{-} e^{-}$
- Processes like $\gamma p \rightarrow \rho^{\circ} p$

Rotating polarization plane:
Two diamond orientations at 90° :
Reduces asymmetries of the apparatus!

Pseudoscalar Beam Asymmetries

Polarization $\left\|\quad \frac{d \sigma}{d \varphi}\right\| \propto(1-P \Sigma \cos (2 \varphi))$
Polarization $\perp \frac{d \sigma}{d \varphi} \perp \quad \propto(1-P \Sigma \cos (2 \varphi-\pi))$
Cancel systematic effects by measuring the asymmetry:

$$
A(\varphi)=\frac{\frac{d \sigma}{d \varphi_{\perp}}-\frac{d \sigma}{d \varphi} \|}{\frac{d \sigma}{d \varphi}+\frac{d \sigma}{d \varphi}} \approx P \sum \cos (2 \varphi)
$$

Beam Asymmetries of π^{0}, η

Σ sensitive to exchanged $J^{P C}$
$\Sigma=\frac{|\omega+\rho|^{2}-|h+b|^{2}}{|\omega+\rho|^{2}+|h+b|^{2}} \quad$ [PRD 92 (2015) 074013]
$\Sigma \approx+1$ for 1^{--}exchange
$\Sigma \approx-1$ for 1^{+-}exchange

$$
A=P \Sigma \cos 2 \phi
$$

Beam Asymmetries of π^{0}, η

- The results: $\Sigma \approx+1$
- Vector exchange dominates
- No observed dip at $-t=0.5(\mathrm{GeV} / c)^{2}$
- Comparison with several models
- First measurement for η at this energy
- Accepted in PRC [arXiv:1701.08123]
- Planned:

Measurement for η^{\prime} with 2017 data

Beam Asymmetries of Vectors

Preliminary: ρ Asymmetry

- $\omega 2$ decays modes: $\pi^{+} \pi^{-} \pi^{0}$ and $\pi^{0} \gamma$:
- Expectations:

$$
\Sigma_{3 \pi} / \Sigma_{\pi^{0} \gamma}=-2
$$

- Measurement:

$$
\Sigma_{3 \pi} / \Sigma_{\pi^{0} \gamma}=-1.88 \pm 0.13
$$

- High statistics for ρ, ω : plans to measure the Spin-Density Matrix elements

Photoproduction of J / ψ close to threshold

$$
\gamma+p \rightarrow J / \psi+p, \quad J / \psi \rightarrow e^{+} e^{-}
$$

- All 2016 data: exclusive events $p+e^{+} e^{-}$
- $e^{+} e^{-}$PID using the electromagnetic calorimeters BCAL and FCAL
- Kinematic fit with the beam energy from the tagger

Photoproduction of J / ψ close to threshold

Planned measurements, after adding the 2017 Spring data:

- $\sigma(E)$ - sensitive to gluons at high x
- t-slope
- Limits on the pentaquark yield (the mass resolution $\sim 6 \mathrm{MeV} / \mathrm{c}^{2}$)

Event Reconstruction and Signals Observed

From 2016 data: $\gamma p \rightarrow 4 \gamma p$

E.Chudakov

ECT*, Trento, April 2017

Event Reconstruction and Signals Observed

From 2016 data: $\gamma p \rightarrow 5 \gamma p$

Outlook

- Analysis of the Spring 2017 data:
- Measurements of various beam asymmetries
- Measurement of the J / ψ cross section
- Measurements of the Spin Density Matrix for the lower vectors
- PWA of the known lower resonances (1.0-1.5 GeV/c ${ }^{2}$)
- Next run is scheduled for the Fall 2017 (some uncertainty)
- 2019-2022 GlueX at "high" intensity 50 MHz in the peak focus on hidden strangeness and hyperon resonances
- Other approved experiments:
- η Radiative Decay Width via Primakoff effect
- Charged pion polarizability via Primakoff effect
- More Proposals and Letters of Intent are on the way

APPENDIX

Hall D Physics Program

Proposal/ experiment	Status	Title	Beam days	$\begin{array}{r} \mathrm{PAC} \\ \# \end{array}$
E12-06-102	A	Mapping the Spectrum of Light Quark Mesons and Gluonic Excitations with Linearly Polarized Photons	120	30
E12-10-011	A-	A Precision Measurement of the η Radiative Decay Width via the Primakoff Effect	79	35
E12-13-003	A	An initial study of hadron decays to strange final states with GlueX in Hall D	200	40
E12-13-008	A-	Measuring the Charged Pion Polarizability in the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$Reaction	25	40
E12-12-002	A	A study of meson and baryon decays to strange final states with GlueX in Hall D	220	42
C12-14-004	C2	Eta Decays with Emphasis on Rare Neutral Modes: The JLab Eta Factory Experiment (JEF) partly concurrent with GlueX $(\eta \rightarrow 3 \pi)$	(130)	42
$\begin{aligned} & \text { LOI12-15-001 } \\ & \text { LOI12-15-006 } \end{aligned}$		Physics with secondary K_{L}° beam ω-production on nuclei		$\begin{aligned} & 43 \\ & 43 \end{aligned}$

Experimental Evidence for Exotic Hybrids 1^{-+}

mass	reaction	experiment	mass	width
1400	$\pi^{-} p \rightarrow \eta \pi^{\circ} n$	GAMS, 100 GeV 1988	1406土20	180 ± 20
	$\pi^{-} p \rightarrow \eta \pi^{-} p$	BKEI, 6 GeV 1993	1320 ± 5	140 ± 10
	$\pi^{-} p \rightarrow \eta \pi^{-} p$	MPS, 18 GeV 1997	1370 ± 60	380 ± 100
	$\pi^{-} p \rightarrow \eta \pi^{\circ} n$	E-852, 18 GeV 2007	1260 ± 40	350 ± 60
	$\bar{p} p \rightarrow \eta \pi^{\circ} \pi^{\circ}$	CBAR, 0 GeV 1999	1360 ± 25	360 ± 80
	$\bar{p} n \rightarrow \eta \pi^{\circ} \pi^{-}$	CBAR, 0 GeV 1998	1400 ± 30	220 ± 90
1600	$\pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A$	VES, 37 GeV 2000	1610 ± 20	290 ± 30
		VES, 37 GeV 2005	none	
		COMPASS, 190 GeV 2009	1660 ± 60	270 ± 60
	$\pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$	E-852, 18 GeV 2002	1590 ± 40	170 ± 60
		E-852, 18 GeV 2006	none	
		COMPASS, 190 GeV 2015	in progress	
	$\begin{aligned} & \gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-} n \\ & \pi^{-} p \rightarrow \pi^{-} \pi^{\circ} \pi^{\circ} p \end{aligned}$	CLAS, 5. GeV 2008	none	
		E-852, 18 GeV 2006	none	
		COMPASS, 190 GeV 2015	in pro	gress
	$\pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$	E-852, 18 GeV 2001	1600 ± 40	340 ± 50
		COMPASS, 190 GeV 2015	in pro	gress
	$\pi^{-} A \rightarrow \eta^{\prime} \pi^{-} A$	VES, 37 GeV 2005	1600	300
		GAMS, 100 GeV 2005	1600	300
	$\pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} p$	E-852, 18 GeV 2004	1710 ± 60	400 ± 90
	$\begin{aligned} & \pi^{-} p \rightarrow \omega \pi^{-} \pi^{\circ} p \\ & \pi^{-} A \rightarrow \omega \pi^{-} \pi^{\circ} A \end{aligned}$	E-852, 18 GeV 2005	1660 ± 10	190 ± 30
		VES, 18 GeV 2005	1600	300
2000	$\pi^{-} p \rightarrow b_{1} \pi, f_{1} \pi$	E-852, 18 GeV 2005	2010 ± 25	230 ± 80

Experimental Evidence for Exotic Hybrids 1^{-+}

mass	reaction	experiment	mass	width
$\begin{gathered} 1400 \\ \end{gathered}$	$\pi^{-} p \rightarrow \eta \pi^{\circ} n$$\pi^{-} p \rightarrow \eta \pi^{-} p$$\pi^{-} p \rightarrow \eta \pi^{-} p$$\pi^{-} p \rightarrow \eta \pi^{\circ} n$$\bar{p} p \rightarrow \eta \pi^{\circ} \pi^{\circ}$$\bar{p} n \rightarrow \eta \pi^{\circ} \pi^{-}$	GAMS, 100 GeV 1988	1406 ± 20	180 ± 20
		BKEI, 6 GeV 1993	1320 ± 5	140 ± 10
		Signal: solid, seen Interpretation: unclear, but 1400 dynamic ori	several ex ot a hybrid ; 4-quark	animents ate
		UDAn, UGEV 1990	1400	L20I 90
1600	$\pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A$	VES, 37 GeV 2000	1610 ± 20	290 ± 30
		VES, 37 GeV 2005	none	
		COMPASS, 190 GeV 2009	1660 ± 60	270 ± 60
	$\pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$	E-852, 18 GeV 2002	1590 ± 40	170 ± 60
		E-852, 18 GeV 2006	none	
		COMPASS, 190 GeV 2015	in progress	
	$\begin{gathered} \gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-} n \\ \pi^{-} p \rightarrow \pi^{-} \pi^{\circ} \pi^{\circ} p \end{gathered}$	CLAS, 5. GeV 2008	none	
		E-852, 18 GeV 2006	none	
		COMPASS, 190 GeV 2015		
	$\pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p$	E-852, 18 GeV 2001	1600 ± 40	340 ± 50
		COMPASS, 190 GeV 2015		gress
	$\pi^{-} A \rightarrow \eta^{\prime} \pi^{-} A$	VES, 37 GeV 2005	1600	300
		GAMS, 100 GeV 2005	1600	300
	$\pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} p$	E-852, 18 GeV 2004	1710 ± 60	400 ± 90
	$\begin{aligned} & \pi^{-} p \rightarrow \omega \pi^{-} \pi^{\circ} p \\ & \pi^{-} A \rightarrow \omega \pi^{-} \pi^{\circ} A \end{aligned}$	E-852, 18 GeV 2005	1660 ± 10	190 ± 30
		VES, 18 GeV 2005	1600	300
2000	$\pi^{-} p \rightarrow b_{1} \pi, f_{1} \pi$	E-852, 18 GeV 2005	2010 ± 25	230 ± 80

Experimental Evidence for Exotic Hybrids 1^{-+}

mass	reaction	experiment	mass	width
1400	$\begin{aligned} & \pi^{-} p \rightarrow \eta \pi^{\circ} n \\ & \pi^{-} p \rightarrow \eta \pi^{-} p \\ & \pi^{-} p \rightarrow \eta \pi^{-} p \\ & \pi^{-} p \rightarrow \eta \pi^{\circ} n \\ & \bar{p} p \rightarrow \eta \pi^{\circ} \pi^{\circ} \\ & \bar{p} n \rightarrow \eta \pi^{\circ} \pi^{-} \end{aligned}$	GAMS, 100 GeV 1988 BKEI, 6 GeV 1993	$\begin{aligned} & 1406 \pm 20 \\ & 1320 \pm 5 \\ & \text { sevn. } \\ & \text { seral ex } \\ & \text { ot a hybrid: } \\ & \text { n; 4-quark } \\ & \hline 1400 \pm 00 \end{aligned}$	$\begin{aligned} & \hline 180 \pm 20 \\ & 140 \pm 10 \\ & \text { eriments } \\ & \text { tate } \\ & \angle \angle 0 \pm 90 \end{aligned}$
16,	$\pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A$ $\pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$ $\begin{gathered} \gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-} n \\ \pi^{-} p \rightarrow \pi^{-} \pi^{\circ} \pi^{\circ} p \end{gathered}$	VES, 37 GeV 2000 VES, 37 GeV 2005 COMPASS, 190 GeV 2009 rorn ron onon Signal: $3 \pi-$ controv COMPASS: COMPASS: $\eta^{\prime} \pi^{-}-$prom Interpretation: may be a hy 1600 needs more	1610 ± 20 none 1660 ± 60 sian-leak onfirmation progress ng id nalysis and	$\begin{aligned} & 290 \pm 30 \\ & 270 \pm 60 \\ & \text { 17n } 20 \\ & \text { ye from } 2^{-} \\ & \text {in } \pi^{-} A \\ & -p \\ & \text { data } \end{aligned}$
	$\begin{gathered} \pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p \\ \pi^{-} A \rightarrow \eta^{\prime} \pi^{-} A \\ \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} p \\ \pi^{-} p \rightarrow \omega \pi^{-} \pi^{\circ} p \\ \pi^{-} A \rightarrow \omega \pi^{-} \pi^{\circ} A \end{gathered}$	COMPASS, 190 GeV 2015 VES, 37 GeV 2005 GAMS, 100 GeV 2005 E-852, 18 GeV 2004 E-852, 18 GeV 2005 VES, 18 GeV 2005	$\begin{aligned} & 1600 \\ & 1600 \\ & 1710 \pm 60 \\ & 1660 \pm 10 \\ & 1600 \end{aligned}$	gress 300 300 400 ± 90 190 ± 30 300
2000	$\pi^{-} p \rightarrow b_{1} \pi, f_{1} \pi$	E-852, 18 GeV 2005	2010 ± 25	230 ± 80

Experimental Evidence for Exotic Hybrids 1^{-+}

mass	reaction	experiment	mass	width
$\begin{array}{r} 1400 \\ \end{array}$	$\begin{gathered} \hline \pi^{-} p \rightarrow \eta \pi^{\circ} n \\ \pi^{-} p \rightarrow \eta \pi^{-} p \\ \pi^{-} p \rightarrow \eta \pi^{-} p \\ \pi^{-} p \rightarrow \eta \pi^{\circ} n \\ \bar{p} p \rightarrow \eta \pi^{\circ} \pi^{\circ} \\ \bar{p} n \rightarrow \eta \pi^{\circ} \pi^{-} \end{gathered}$		$\begin{aligned} & \hline 1406 \pm 20 \\ & 1320 \pm 5 \\ & \text { several ex } \\ & \text { ot a hybrid: } \\ & \text { n; 4-quark } \end{aligned}$	$\begin{aligned} & \hline 180 \pm 20 \\ & 140 \pm 10 \\ & \text { eriments } \\ & \text { tate } \end{aligned}$
16,00	$\underbrace{\pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A}_{\pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p}$ $\begin{gathered} \gamma p \rightarrow \pi^{+} \pi^{+} \pi^{-} n \\ \pi^{-} p \rightarrow \pi^{-} \pi^{\circ} \pi^{\circ} p \end{gathered}$		1610 ± 20 none 1660 ± 60 sial - leaka nfirmation progress ng id nalysis and	$\begin{aligned} & 290 \pm 30 \\ & \\ & 270 \pm 60 \\ & 17 n \geq 2 \\ & \text { fenom } 2^{-} \\ & \text {n } \pi^{-} A \\ & -p \end{aligned}$
	$\begin{gathered} \pi^{-} p \rightarrow \eta^{\prime} \pi^{-} p \\ \pi^{-} A \rightarrow \eta^{\prime} \pi^{-} A \\ \pi^{-} p \rightarrow \eta \pi^{+} \pi^{-}-p \\ \pi^{-} p \rightarrow \infty \pi^{-} \pi^{\circ} p \\ \pi^{-} A \rightarrow \omega \pi^{-} \pi^{\circ} A \end{gathered}$	COMPASS, 190 GeV 2015 VES, 37 GeV 2005 GAMS, 100 GeV 2005 Signal: weak - one Interpretation: may be a hy expected de	1600 1600 periment id ay modes	$\begin{aligned} & \text { gress } \\ & 300 \\ & 300 \\ & \text { ily } \begin{array}{l} 0 \pm 90 \\ 0 \pm 30 \\ 0 \end{array} \\ & \hline \end{aligned}$
2000	$\pi^{-} p \rightarrow b_{1} \pi, f_{1} \pi$	2000 needs more		0 ± 80

Hyperon Spectroscopy in Photoproduction

GlueX 2－nd stage：2019－．．
－With DIRC
－High beam intensity 50 MHz in peak
－QN of hyperons／cascades Like CLAS（ $\left.\wedge(1405): \frac{1}{2}^{-}\right)$

Baryon 2016：discussed by A．Gillitzer on Tuesday

State	Status	J^{P}	Width （MeV）
三	＊＊＊＊	$1 / 2^{+}$	0
三（1530）	＊＊＊＊	$3 / 2^{+}$	9
三（1620）	＊	？	22
三（1690）	＊＊＊	？？	＜30
三（1820）	＊＊＊	3／2－	24
三（1950）	＊＊＊	？？	60 ± 20
三（2030）	＊＊＊	$\geq 5 / 2$ ？	20_{-5}^{+15}
三（2120）	＊	？？	＜20
三（2250）	＊＊	？？	<30
三（2370）	＊＊	？？	80
三（2500）	＊	？？	150

