J/ψ at Threshold at JLab (Hall A, B)

Jian-ping Chen, Jefferson Lab, ECT* Workshop on Proton Mass, April 3-7, 2017

- Introduction
- Jefferson Lab 12 GeV Energy Upgrade
- J/ψ Threshold Production with SoLID
- J/ψ Threshold Production with CLAS12
- Summary

Thank Zein-Eddine Meziani and Stepan Stepanyan for helping with slides

Introduction: Proton Mass

Mass Generation

Mass Decomposition

Nucleon Structure: A Universe Inside

- Nucleon: proton = (uud), neutron=(udd) + sea quarks + gluons
- Nucleon: 99% of the visible mass in universe
 - Proton mass "puzzle":

Quarks carry $\sim 1\%$? of proton's mass

How does glue dynamics generate the energy for nucleon mass?

Proton spin "puzzle":

Quarks carry $\sim 30\%$ of proton's spin

How does quark and gluon dynamics generate the rest of the proton spin?

> 3D structure of nucleon: 3D in momentum or (2D space +1 in momentum)

How does the glue bind quarks and itself into a proton and nuclei? Can we scan the nucleon to reveal its 3D structure?

Theoretical Developments

- Dynamical Chiral Symmetry Breaking <-> Confinement
 - > Responsible for ~99% of the nucleon mass
 - > Higgs mechanism is (almost) irrelevant to light quarks
 - Understand proton mass (energy structure) can provide clue
- Recent development in theory
 - Lattice QCD
 - Bound State QCD: Dyson-Schwinger
 - Ads/CFT: Holographic QCD
 - **>**
- Direct comparison becomes possible
 - LQCD: Moments of PDFs
 Proton Mass Decomposition
 - Quasi-PDFsx-dependence of PDFs, TMDs, GPDs

Proton Mass: QCD energy

X. Ji, PRL741071(1995)

 One can calculate the proton mass through the expectation value of the QCD Hamiltonian,

$$H_{\mathrm{QCD}} = H_q + H_m + H_g + H_a$$
 .
$$H_q = \int d^3 \vec{x} \; \bar{\psi} (-i \mathbf{D} \cdot \alpha) \psi, \qquad \qquad \text{Quark energy}$$

$$H_m = \int d^3 \vec{x} \; \bar{\psi} m \psi, \qquad \qquad \qquad \text{Quark mass}$$

$$H_g = \int d^3 \vec{x} \; \frac{1}{2} (\mathbf{E}^2 + \mathbf{B}^2), \qquad \qquad \qquad \text{Gluon energy}$$

$$H_a = \int d^3 \vec{x} \; \frac{9\alpha_s}{16\pi} (\mathbf{E}^2 - \mathbf{B}^2). \qquad \qquad \qquad \text{Trace anomaly}$$

Relating to Measurements

- Traceless part at rest frame becomes quark kinetic energy and gluon energy
 can be extracted from parton distribution functions
 scheme and scale dependent
- Quark mass: u and d quark contribution obtain from pi-nucleon sigma term
 s quark from Chiral Purturbation Theory for baryon octet
 or LQCD, ...
- Trace Anomaly: analogous to the cosmological constant (dark energy)!
 J/ψ threshold production may provide access?

Experimental status
$$\gamma(\gamma^*) + N \rightarrow N + J/\Psi$$

More data exist with inelastic scattering on nuclei, such as A-dependence.

Not included are the most recent results from HFRA H1/ZEUS at large momentum transfers and diffractive production with electroproduction as well as the LHC results

The physics focus is this threshold region

Near Threshold $\gamma + N \longrightarrow N + J/\Psi$

Intense experimental effort (SLAC, Cornell ...) shortly after the discovery of J/ψ

But near threshold not much since ~40 years till now

J/ψ as probe of the strong color fields in the nucleon!

$$J/\psi(1S): I^{G}(J^{PC}) = 0^{-}(1^{--})$$
 $M_{J/\psi} \approx 3.097 GeV$

- J/ψ is a charm-anti-charm system
 - Little common valence quark between J/ψ and nucleon
 - Quark exchange interactions are strongly suppressed
- Charm quark is heavy $\gg \Lambda_{QCD}$
 - Typical size of J/ψ is 0.2-0.3 fm

Interaction between J/ψ-N

- New scale provided by charm quark mass and size of the J/ψ
 - OPE, Phenomenology, Lattice QCD ...
- High Energy region: Pomeron picture ...
- Medium/Low Energy: 2-gluon exchange
- Very low energy: QCD color Van der Waals force
 - Prediction of J/ψ-Nuclei bound state
 - Brodsky et al.
- Experimentally no free J/ψs are available
 - Challenging to produce close to threshold!
 - Photo/electro-production of J/ψ at JLab is an opportunity

Reaction Mechanism?

Models-I: Hard scattering mechanism 2-gluon exchange

(Brodsky, Chudakov, Hoyer, Laget PLB 498, 23 (2001)

$$2-g:(1-x)^2F(t)$$

 $F(t) \propto \exp(1.13t)$

$$x = \frac{2M_{p}M_{J/\psi} + M_{J/\psi}^{2}}{2E_{\gamma}M_{p}}$$

Models -II: Partonic soft mechanism

(Frankfurt and Strikman, PRD 66, 031502 [2002]) **2-gluon Form Factor**

$$F.F. \propto (1 - t/1.0 \text{ GeV}^2)^{-4}$$

Reaction Mechanism

Models (I): Hard scattering

(Brodsky, Chudakov, Hoyer, Laget 2001)

Add in 3-gluon scattering

$$2-g:(1-x)^2F(t)$$

$$3-g:(1-x)^{0}F(t)$$

$$F(t) \propto \exp(1.13t)$$

$$x = \frac{2M_p M_{J/\psi} + M_{J/\psi}^2}{2E_{\gamma} M_p}$$

Another view: Reaction mechanism with FSI?

- D. Kharzeev. Quarkonium interactions in QCD, 1995 nucl-th/9601029
- D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, Eur. Phys.J., C9:459-462, 1999

$$\frac{d\,\sigma_{\gamma\,N\to\psi\,N}}{d\,t}(s,t=0) = \frac{3\Gamma(\psi\to e^+e^-)}{\alpha m_\psi} \left(\frac{k_{\psi N}}{k_{\gamma N}}\right)^2 \frac{d\,\sigma_{\psi\,N\to\psi\,N}}{d\,t}(s,t=0)$$
 •
$$\frac{d\,\sigma_{\psi\,N\to\psi\,N}}{d\,t}(s,t=0) = \frac{1}{64\pi} \frac{1}{m_\psi^2(\lambda^2-m_N^2)} |\mathcal{M}_{\psi N}(s,t=0)|^2$$
 •
$$\frac{10^2}{10^2}$$
 •
$$\frac{10$$

$$\frac{d \,\sigma_{\psi \, N \to \psi \, N}}{d \, t}(s, t=0) = \frac{1}{64\pi} \frac{1}{m_{\psi}^2 (\lambda^2 - m_N^2)} |\mathcal{M}_{\psi \, N}(s, t=0)|^2$$

- Real part contains the conformal (trace) anomaly
 - Dominate the near threshold region

A measurement near threshold could shed light on the conformal anomaly

JLab 12 GeV Upgrade

12 GeV Physics Program

12 GeV Upgrade

12 GeV Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions,...

Hall A – form factors, future new experiments (e.g., SoLID and MOLLER)

Hall D – exploring origin of confinement by studying exotic mesons

Hall C – precision determination of valence quark properties in nucleons/nuclei

Status of JLab 12 GeV Upgrade

- Hall A completed three experiments:
 - **DVCS-I**, **GMp** and **Ar**(e, e'p)
- Hall B complete Prad experiment, partly complete HPS
 achieved KPP (Key Performance Parameter), upgrade mostly complete
 only remaining equipment is the solenoid
- Hall C achieved KPP, upgrade complete
- Hall D took initial data, have first publication (Eugene Chudakov's talk)

JLab 12 GeV Upgrade Project pretty much complete

12 GeV Upgrade Project

TPC = \$338M ETC < \$2M

Project Scope (~99.7% complete):

- Doubling the accelerator beam energy DONE
- New experimental Hall D and beam line DONE
- Civil construction including utilities DONE
- Upgrade to Experimental Hall C DONE
- Upgrade to Experimental Hall B 99%
 - Solenoid only scope remaining

Planned J/ψ threshold production study at JLab

SoLID Program

Why SoLID

- JLab 6 GeV: precision measurements
 high luminosity (10³⁹) but small acceptance (HRS/HMS: < 10 msr)
 - or large acceptance but low luminosity (CLAS6: 10³⁴)
- JLab 12 GeV crosses J/ ψ production threshold and opens up a window of opportunities (DIS, SIDIS, Deep Exclusive Processes) to study valence quark (3-d) structure of the nucleon and other high impact physics (PVDIS, ...)
- High precision in multi-dimension or rare processes requires very high statistics → large acceptance and high luminosity
- CLAS12: luminosity upgrade (one order of magnitude) to 10³⁵
- To fully exploit the potential of 12 GeV, taking advantage of the latest technical (detectors, DAQ, simulations,...) development
 - → SoLID: large acceptance detector can handle 10³⁷ luminosity (no baffles)

Overview of SoLID

Solenoidal Large Intensity Device

- Full exploitation of JLab 12 GeV Upgrade
 - \rightarrow A Large Acceptance Detector AND Can Handle High Luminosity (10^{37} - 10^{39}) Take advantage of latest development in detectors, data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ
- •5 highly rated experiments approved
 - Three SIDIS experiments, one PVDIS, one J/ ψ production (+ 3 run group experiments)
- •Strong collaboration (250+ collaborators from 70+ institutes, 13 countries)
 Significant international contributions (Chinese collaboration)

SoLID-J/ ψ : Study Non-Perturbative Gluons

J/ψ: ideal probe of non-perturbative gluon

The <u>high luminosity & large acceptance</u> capability of SoLID enables a <u>unique</u> "precision" measurement near threshold

- Shed light on the low energy J/ψ-nucleon interaction (color Van der Waals force)
- Shed light on the 'conformal anomaly' an important piece in the proton mass budget:

Models relate J/ψ enhancement to trace anomaly

SoLID-J/ ψ Program

- Measure the t dependence and energy dependence of J/ψ cross sections near threshold
 - → Probe the nucleon strong fields in a non-perturbative region
 - Search for a possible enhancement of the cross section close to threshold
 - Shed some light on the conformal/trace anomaly

Establish a baseline for J/ψ production in the JLab energy range!

Bonuses:

- Photoproduction data
- Decay angular distribution of J/ψ
- Interference with Bethe-Heitler term (real vs. imaginary)

Future Plans:

- Search for J/ψ-Nuclei bound states
- J/ψ medium modification

Experimental Overview

- 50 days of 3 μA beam on a 15 cm long LH₂ target at $1 \times 10^{37} {\rm cm}^{-2} {\rm s}^{-1}$
 - 10 more days include calibration/background run
- SoLID design overall compatible with SIDIS with some changes
 - +10 cm of the radius of the first three GEM planes
 - Move large angle detector upstream by 12 cm
 - Opening angle at 26 degrees achieved by adding a 20 cm iron ring behind the front yoke
- Main Trigger: Triple coincidence of e⁻e⁻e⁺
 - Additional trigger double coincidence (e⁺e⁻)

$$e^{-} + p \longrightarrow e^{-} + p + J/\Psi(e^{-} + e^{+})$$

Projection of Total Cross Section

J/Y Photoproduction Total Cross Section from nucleon

Study the threshold behavior of cross section with high precision could shed light on the conformal anomaly

SoLID Programs and Status

SIDIS-Spin: TMDs and Transversity/Tensor Charge

PVDIS: Precision Test of Standard Model

Timeline and Plan

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He, **rating A**

E12-11-007: Single and Double Spin Asymmetries on ³He, **rating A**

E12-11-108: Single and Double Spin Asymmetries on Transverse Proton, **rating A**Two run group experiments DiHadron and Ay

Key of SoLID-Spin program:

Large Acceptance

- + High Luminosity
 - → 4-D mapping of asymmetries
- → Tensor charge, TMDs ...
- → Lattice QCD, QCD Dynamics, Models.

Tensor Charges

Parity Violation with SoLID

PVDIS asymmetry has two terms:

- 1) C_{2q} weak couplings, test of Standard Model
- 2) Unique precision information on quark structure of nucleon

Mass reach in a composite model, SoLID-PVDIS ~ 20 TeV, sensitivity match LHC reach with complementary Chiral and flavor combinations

6 GeV Results: D. Wang et al., Nature 506, no. 7486, 67 (2014)

SoLID Timeline, Status

- 2010-now: Five highly rated SoLID experiments approved by PAC + 3 run group
- 2013: CLEO-II magnet formally requested and agreed, site visits and planning
- --2010-now: Progress
 - Spectrometer magnet study, modifications
 - Detailed simulations
 - Detector/DAQ design and pre-R&D
 - Strong International collaboration (Chinese, Canadian, ...)
- √ 7/2014: pre-CDR submitted
- ✓ 2/2015: Director's Review, successful
- ✓ 2014-2015: Long Range Plan, SoLID strongly endorsed
- ✓ 2015: discussion with DOE on pre-R&D
- √ 2016: CLEO-II magnet transported JLab
- ✓ 2017: Responses to Director's Review Recommendations

SoLID Timeline, Status and Plan

- 2010-now: Five highly rated SoLID experiments approved by PAC + 3 run group
- 2013: CLEO-II magnet formally requested and agreed, site visits and planning
- --2010-now: Progress
 - Spectrometer magnet study, modifications
 - Detailed simulations
 - Detector/DAQ design and pre-R&D
 - Strong International collaboration (Chinese, Canadian, ...)
- √ 7/2014: pre-CDR submitted
- ✓ 2/2015: Director's Review, successful
- ✓ 2014-2015: Long Range Plan, SoLID strongly endorsed
- ✓ 2015: discussion with DOE on pre-R&D
- ✓ 2016: CLEO-II magnet transported to JLab
- ✓ 2016-17: Responses to Director's Review Recommendations

Plan:

- 2017: Update pCDR (MIE) → DOE Science Review
- CD processes/ PED/R&D (2017 2019)
- Construction starts FY 2020

Jefferson Lab Mission: SoLID

Proposed QCD & Fundamental Symmetries MIE

- Unprecedented precision in 3D momentum space imaging of the nucleon.
- A search for new physics in the 10-20 TeV region, complementary to the reach at LHC.
- Allowing access to threshold of J/ψ production, allowing access to the QCD conformal anomaly with unmatched precision.

Unique Capability:

- √High luminosity (10³⁷⁻³⁹)

Item	Date
Director's Review	February 2015
SoLID User Meeting with DOE/NP	November 2015
Director's Review Recommendations affecting science reach; progress: simulations of core measurements, DAQ rate capability, detector/magnet integration	February 2016
CLEO-II Magnet Disassembly at CESR	Summer 2016
CLEO-II Magnet move to Jefferson Lab	Fall 2016
Follow-Up Director's Review (in progress)	Late 2016
Draft MIE Submission – goal	February 2017
DOE/NP-led Science Review – possible timing	Spring 2017
Annual Budget Briefing – include budget profile	February 2018
MIE Start	FY2020

- CLEO-II cryostat at JLab, steel follows this Spring
- Working with collaboration to follow up from Director's review and finalize draft MIE

Planned J/ψ threshold production study at JLab

CLAS12 Program

CLAS12 in Hall-B

T	1035	-2 -1
L =	$10^{35} cm$	\bar{S}

	FD	CD
Angular range Track Photons	$5^{0} - 40^{0}$ $2^{0} - 40^{0}$	35º – 125º
Resolution dp/p (%) dθ (mr) Δφ (mr)	< 1 @ 5 GeV/c < 1 < 3	< 5 @ 1.5 GeV/c < 10 – 20 < 5
Photon detection Energy (MeV) δθ (mr) Neutron detection	>150 4 @ 1 GeV N _{eff} < 0.7	 N _{eff} < 0.3
Particle ID e/π π/p π/K Κ/p π(η)→γγ	Full range < 5 GeV/c < 2.6 GeV/c < 4 GeV/c Full range	 < 1.25 GeV/c < 0.65 GeV/c < 1.0 GeV/c

Lepton pair production with 12 GeV CEBAF

- Experiments to measure TCS and J/Ψ photo- and electroproduciton have been approved for CLAS12 in Hall-B and SoLID in Hall-A
- □ With 11 GeV electron beam $M_{ee} \le 3.4 GeV$
- TCS will be studied in the range of outgoing photon virtualities, $M_{ee}^2 \equiv Q'^2$, from 4 GeV² to 9 GeV² (resonances free region)

 J/Ψ photo-production can be studied in energy range from threshold to 11 GeV

J/ψ quasi-real photoproduction with CLAS12

- The J/ψ is identified as a peak on top of smooth BH background in the invariant mass distribution of decay leptons, e⁺e⁻, detected in CLAS12 FD
- CLAS12 FD resolution for magnet (torus) field settings down to 75% will be adequate

t-dependence: projected data

$$ep \rightarrow e^+e^-pX$$

100 days @ 10³⁵ cm⁻² sec⁻¹

Estimates assume:

$$\frac{d\sigma}{dt} \propto e^{Bt}$$
; $B = 1.2 \, GeV^{-2}$

and

$$\frac{d\sigma}{dt} \propto \frac{1}{Q^4}$$

Integrated for Q²< 0.01 GeV²

Search for hidden charmed pentaquarks and study of gluonic structure of the nucleon

Experiment E12-12-001 measures J/ψ production on the proton near threshold – will verify existence of the charmed pentaquarks and will study the gluon field of the nucleon

Summary

 J/ψ threshold production studies gluon dynamics, trace anomaly

→ may provide information on trace part of the proton mass

JLab 12 GeV energy upgrade crosses a threshold to allow J/ψ production measurements

Both SoLID and CLAS12 J/ψ program will measure with high precision J/ψ elertroproduction and photoproduction near threshold

- Probe the nucleon strong fields in a non-perturbative region
- Search for a possible enhancement of the cross section close to threshold
- Shed some light on the conformal/trace

The data sets can also be used to search and study LHCb hidden charm pentaquark states in the pJ/ ψ decay mode, P_c (4380) and P_c (4450)